K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Chỉ ra được câu a thôi ạ:((

a: Xet ΔBME vuông tại M và ΔBAC vuông tại A có

góc B chung

=>ΔBME đồng dạng với ΔBAC

b: Xét ΔMBE vuông tại M và ΔMNC vuông tại M có

góc MBE=góc MNC

=>ΔMBE đồng dạng với ΔMNC

=>MB/MN=ME/MC

=>MN*ME=MB*MC=1/4BC^2

=>BC^2=4*MN*ME

14 tháng 4 2023

a) xét △ABC và △MBE có : 

Góc BAC  = Góc BME  = 90 (Gt)

Góc B chung

⇒△ABC ∼ △MBE (g.g) (1)

b)Xét △ABC và △MCN có:

Góc BAC  = góc NMC = 90 (Gt)

⇒△ABC ∼ △MBE (g.g) (2)

Ta có M là tđ của BC ⇒ MB =MC =1/2 BC

Từ (1) và (2) ⇒△MNC ∼ △MBE

⇒EM/MC = MN/BM

⇔ EM/MN = 1/2BC : 1/2BC

⇔BC2 =EM/MN : 4

⇔BC2 = EM/4MN

 

26 tháng 5 2019

Hình vẽ:

26 tháng 5 2019

Xét \(\Delta ABC\) và \(\Delta DIC\) có:

\(\widehat{ABC}=\widehat{DIC}=90^0\)

\(\widehat{ACB}\) chung.

\(\Rightarrow\Delta ABC~DIC\left(g.g\right)\)

b.

Hạ \(BK\perp AC\)

Do BI trung tuyến nên \(BI=IA=IC=\frac{AC}{2}=7,5\left(cm\right)\)

\(\Delta KCB~\Delta BCA\left(g.g\right)\Rightarrow BC^2=KC\cdot AB\Rightarrow KC=9,6\left(cm\right)\)

Áp dụng định lý Thales,ta có:

\(\frac{CI}{CK}=\frac{CD}{CB}=\frac{ID}{BK}=\frac{7,5}{9,6}\)

\(\Rightarrow CD=\frac{7,5\cdot CB}{9,6}=\frac{7,5\cdot12}{9,6}=9,375\left(cm\right)\)

Áp dụng định lý Pythagoras vào \(\Delta CBK\),ta có:

\(BK^2+KC^2=BC^2\)

\(\Rightarrow BK^2=BC^2-KC^2=51,84\left(cm\right)\)

\(\Rightarrow BK=7,2\left(cm\right)\)

\(ID=\frac{7,5\cdot BK}{9,6}=\frac{7,5\cdot7,2}{9,6}=5,625\left(cm\right)\)

c.

\(\Delta BDE~IDC\left(g.g\right)\Rightarrowđpcm\)

P/S:Bài j mà kỳ cục zậy ? câu c lại easy hơn nhiều câu b:((

a: Xét ΔMEC vuông tại M và ΔABC vuông tại A có

góc C chung

=>ΔMEC đồng dạng với ΔABC

=>ME/AB=MC/AC

=>ME/3=2,5/4=5/8

=>ME=15/8cm

b: Xét ΔEAF vuông tại A và ΔEMC vuông tại M có

góc AEF=góc MEC

=>ΔEAF đồng dạng với ΔEMC

=>EA/EM=EF/EC

=>EA*EC=EF*EM

 

16 tháng 5 2023

c.on

2 tháng 3 2022

a, Ta có:\(AB^2+AC^2=12^2+16^2=400\)(cm)

\(BC^2=20^2=400\)(cm)

\(\Rightarrow AB^2+AC^2=BC^2\)

\(\Rightarrow\Delta ABC\) vuông tại A

Xét Δ DNC và Δ ABC có:

\(\widehat{NDC}=\widehat{BAC}\left(=90^o\right)\)

Chung \(\widehat{C}\)

⇒Δ DNC \(\sim\) Δ ABC (g.g)

b, Ta có: BD=DC=1/2.BC=1/2.20=10(cm)

Δ DNC \(\sim\) Δ ABC (cma)

\(\Rightarrow\dfrac{ND}{AB}=\dfrac{NC}{BC}=\dfrac{DC}{AC}\Rightarrow\dfrac{ND}{12}=\dfrac{NC}{20}=\dfrac{10}{16}\Rightarrow\left\{{}\begin{matrix}ND=7,5\left(cm\right)\\NC=12,5\left(cm\right)\end{matrix}\right.\)

c, Xét Δ DBM và Δ ABC có:

Chung \(\widehat{B}\)

\(\widehat{BDM}=\widehat{BAC}\left(=90^o\right)\)

⇒Δ DBM \(\sim\) Δ ABC(g.g)

\(\Rightarrow\dfrac{MB}{BC}=\dfrac{BD}{AB}\Rightarrow\dfrac{MB}{20}=\dfrac{10}{12}\Rightarrow MB=\dfrac{50}{3}\left(cm\right)\)

Ta có: MD⊥BC, BD=DC ⇒ ΔBDC cân tại M

\(\Rightarrow MB=MC=\dfrac{50}{3}\left(cm\right)\)

12 tháng 5 2019

a) áp dụng định lí py-ta-go ta có:

           \(BC^2=AB^2+AC^2\)

=> 225 = 81 + 144 = 225

=> tam giác ABC là tam giác vuông

trong tam giác vuông ABC có \(\widehat{A}\)\(\widehat{B}\)>\(\widehat{C}\)(15cm>12cm > 9cm) vì góc đối diện vs cạnh lớn hơn là góc lớn hơn

vậy \(\widehat{A}\)>\(\widehat{B}\)>\(\widehat{C}\)

b) xem lại đề bài

  9cm A B C 12cm 15cm D

18 tháng 3 2022

phần b bạn kẻ thêm 1 đường nữa nhé, đề bài đúng r

a: Xét ΔCMI vuông tại M và ΔCAB vuông tại A có

góc C chung

=>ΔCMI đồng dạng với ΔCAB

b: BC=căn 5^2+12^2=13cm

CM=13/2=6,5cm

ΔCMI đồng dạng với ΔCAB

=>MI/AB=CM/CA

=>MI/5=6,5/12=13/24

=>MI=65/24(cm)

Bài 1: Cho tam giac ABC, M là trung điểm cua AB. Đường thẳng qua M và song song với BC cắt AC ở I và song song với AB cắt BC ở k. Chứng minh rằng: a) AM=IK b) Tam giác AMI bằng tam giác IKC c) AI=IC Bài 2: Cho tam giác ABC vuông tại A. Gọi I là trung điểm BC. Trên tia đối của tia IA lấy điểm D sao cho ID=IA a) CMR tam giác BID bằng tam giác CIA b) CMR : BD vuông góc với AB c) Qua A kẻ đường thẳng song song với BC cắt...
Đọc tiếp

Bài 1: Cho tam giac ABC, M là trung điểm cua AB. Đường thẳng qua M và song song với BC cắt AC ở I và song song với AB cắt BC ở k. Chứng minh rằng: a) AM=IK b) Tam giác AMI bằng tam giác IKC c) AI=IC Bài 2: Cho tam giác ABC vuông tại A. Gọi I là trung điểm BC. Trên tia đối của tia IA lấy điểm D sao cho ID=IA a) CMR tam giác BID bằng tam giác CIA b) CMR : BD vuông góc với AB c) Qua A kẻ đường thẳng song song với BC cắt đường thẳng BD tại M. C/M tam giác BAM bằng tam giác ABC d) CMR: AB là tia phân giác cuả góc DAM Bài 3: Cho tam giác ABC vuông ở A và AB=AC.Gọi K là trung điểm của BC a) C/M: tam giác AKB bằng tam giác AKC b) C/M: AK vuông góc với BC c) từ C vẽ đường vuông góc với BC cắt đường thẳng AB tại E.C/M EK song song với AK Bài 4: Cho tam giác ABC có AB=AC, kẻ BD vuông góc với AC, CE vuông góc với AB(D thuộc AC, E thuộc AB). Gọi O là giao điểm của BD và CE. CMR a) BD= CE b) tam giác OEB bằng tam giác ODC c) AO là tia phân giác cua góc BAC

1
22 tháng 11 2019

1. Câu hỏi của 1234567890 - Toán lớp 7 - Học toán với OnlineMath