K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 1 2017

* Xét tử số của K, ta nhận thấy:

Số 1 được lấy 2012 lần

Số 2 được lấy 2011 lần

Số 3 được lấy 2010 lần

........

Số 2011 được lấy 2 lần

Số 2012 được lấy 1 lần
 
Vậy tử số viết được thành: 2012x1+2011x2+2010x3+...+2x2011+1x2012

Nên \(K=1\)

\(=>\)\(K+2011=2012\)

Vậy \(K+2011=2012\)
Chắc chắn đúng nhé!!

13 tháng 1 2017

mk quên ko nói giải rõ ra nha

2 tháng 9 2015

\(K=\frac{\left(1+1+1......+1\right)+\left(2+2+.....+2\right)+......+2012}{1\times2012+2011\times2+.....+2012\times1}\)(dùng tính chất kết hợp)

\(K=\frac{1\times2012+2\times2011+.....+2012\times1}{1\times2012+2\times2011+.....+2012\times2}\)(các phép tính và số đều giống nhau)

\(K=1\)

2 tháng 9 2015

\(K=\frac{1\times2012+2\times2011+3\times2010+...+2012\times1}{2012\times1+2011\times2+2010\times3+...+1\times2012}=1\)

3 tháng 3 2017

bằng 2014 nhé bạn

14 tháng 2 2017

Ta có: 1+(1+2)+(1+2+3)+...+(1+2+3+...+2017)=2017x1+2016x2+2015x3+...+2x2016+1x2017

=> K-2016=\(\frac{1+\left(1+2\right)+\left(1+2+3\right)+...+\left(1+2+3+...+2017\right)}{2017x1+2016x2+2015x3+...+2x2016+1x2017}\)=\(\frac{2017x1+2016x2+2015x3+...+2x2016+1x2017}{2017x1+2016x2+2015x3+...+2x2016+1x2017}=1\)

=> K=2016+1=2017

Toán tiếng anh hả bạn

Bài này thì bạn mình có thể giải được

Thank you

23 tháng 3 2017

tôi không biết nên đừng hỏi. DO NOT ASK WHY?

8 tháng 10 2017

Toán lớp 5 sao khó thế .

2 tháng 3 2016

Tử số bằng mẫu số 

K-2016=1

K=2017

Muốn biết tại sao tử= mẫu thì tích nha

2 tháng 3 2016

\(K-2016=\frac{1+\left(1+2\right)+\left(1+2+3\right)+...+\left(1+2+3+...+2017\right)}{2017\times1+2016\times2+2015\times3+...+2\times2016+1\times2017}\)

\(K-2016=\frac{1\times2017+2\times2016+3\times2015+...+2017\times1}{2017\times1+2016\times2+2015\times3+...+2017\times1}\)

\(K-2016=1\)

\(\Rightarrow K=1+2016\)

\(\Rightarrow K=2017\)

15 tháng 10 2016

Ta xét : \(f\left(x\right)+f\left(1-x\right)=\frac{x^3}{1-3x+3x^2}+\frac{\left(1-x\right)^3}{1-3\left(1-x\right)+3\left(1-x\right)^2}\)

\(=\frac{x^3}{1-3x+3x^2}+\frac{\left(1-x\right)^3}{3x^2-3x+1}=\frac{\left(x+1-x\right)\left(x^2+x^2-2x+1+x^2-x\right)}{3x^2-3x+1}=\frac{3x^2-3x+1}{3x^2-3x+1}=1\)

Áp dụng ta có : 

\(A=\left[f\left(\frac{1}{2012}\right)+f\left(\frac{2011}{2012}\right)\right]+\left[f\left(\frac{2}{2012}\right)+f\left(\frac{2010}{2012}\right)\right]+...+\left[f\left(\frac{1006}{2012}\right)+f\left(\frac{1006}{2012}\right)\right]\)

\(=1+1+...+1\)(Có tất cả 1006 số 1)

\(=1006\)

16 tháng 10 2016

sai rồi bạn ơi