K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 1 2017

chững minh cái j

12 tháng 1 2017

sorry chứng minh vs mọi n bạn ah

21 tháng 12 2016

a ) 

Ta co S = ( 2 + 2+ 23 + 24 + 25 ) + ...... + (  296 + 297 + 298 +299 + 2100 )

= 2 ( 1 + 2 + 2.2 + 2.2.2 + 2.2.2.2 ) + .... + 296 ( 1 + 2 + 2.2 + 2.2.2 + 2.2.2.2 )

= 2.31 + .....+ 296.31

= 31 ( 2 + ... + 296 ) chia het cho 31

b ) Goi d laf UC ( 3n+1 ; 4n+1 )

=> 3n + 1 ⋮ d va 4n + 1 ⋮ d

=> 4(3n + 1)⋮ d va3(4n +1) ⋮ d

=> 12n + 4 ⋮ d và 12n + 3 ⋮ d

=> ( 12n + 4 ) - ( 12n + 3 ) ⋮ d

=> 1 ⋮ d => d = 1

Vi ƯC ( 3N+1;4N+1 ) = 1 => 3N+1;4N+1 là nguyên tố cùng nhau

c ) Xét x > 0

=> |x| + x = x+x = 2x = 0 => x = 0 ( loại )

Xét x < 0 

=> |x| + x = - x + x = 0 ( tm)

Vậy x < 0

22 tháng 12 2016

Cảm ơn nhìu!

2 tháng 11 2019

Ta có:

\(VT=1+\frac{1}{n^2}+\frac{1}{\left(n+1\right)^2}\)

\(=\frac{n^2\left(n+1\right)^2}{n^2\left(n+1\right)^2}+\frac{\left(n+1\right)^2}{n^2\left(n+1\right)^2}+\frac{n^2}{n^2\left(n+1\right)^2}\)

\(=\frac{n^2\left(n+1\right)^2+\left(n+1\right)^2+n^2}{n^2\left(n+1\right)^2}\)

\(=\frac{\left[n\left(n+1\right)\right]^2+\left(n+1\right)^2+n^2}{n^2\left(n+1\right)^2}\)

\(=\frac{\left[n\left(n+1\right)\right]^2+n^2+2n+1+n^2}{n^2\left(n+1\right)}\left(1\right)\)

\(VP=\frac{\left(n^2+n+1\right)}{n^2\left(n+1\right)^2}\)

\(=\frac{\left[n\left(n+1\right)+1\right]^2}{n^2\left(n+1\right)^2}\)

\(=\frac{\left[n\left(n+1\right)\right]^2+1+2\left[n\left(n+1\right)\right]}{n^2\left(n+1\right)^2}\)

\(=\frac{\left[n\left(n+1\right)\right]^2+1+2\left(n^2+1\right)}{n^2\left(n+1\right)^2}\)

\(=\frac{\left[n\left(n+1\right)\right]^2+1+2n^2+2n}{n^2\left(n+1\right)^2}\)

\(=\frac{\left[n\left(n+1\right)\right]^2+2n+1+2n^2}{n^2\left(n+1\right)^2}\left(2\right)\)

Từ (1) và (2)

=>đpcm

2 tháng 11 2019

Vì \(\sqrt{x}\)là một số hữu tỉ

\(\Rightarrow\sqrt{x}\)có dạng \(\frac{a}{b}\)(\(\frac{a}{b}\)là một phân số tối giản)

Vì \(\sqrt{x}\ge0\)và theo đề bài \(\frac{a}{b}\ne0\Rightarrow\frac{a}{b}\ge0\)

\(\Rightarrow a,b\)là những số nguyên dương (1)

Vì \(\sqrt{x}\)có dạng \(\frac{a}{b}\Rightarrow\left(\sqrt{x}\right)^2=\left(\frac{a}{b}\right)^2\Rightarrow x=\frac{a^2}{b^2}\)(2)

Vì \(\frac{a}{b}\)là phân số tối giản

\(\Rightarrow a,b\)là hai số nguyên tố cùng nhau

\(\Rightarrow\)ƯCLN(a,b)=1

Vì \(a^2\) có Ư(a), \(b^2\)có Ư(b)

\(\Rightarrow a^2,b^2\) là hai số nguyên tố cùng nhau

\(\Rightarrow\)ƯCLN(\(a^2,b^2\))=1

\(\Rightarrow\frac{a^2}{b^2}\) là phân số tối giản (3)

Từ (1), (2) và (3)

=>đpcm

23 tháng 8 2023

a) \(4^n=4096\Rightarrow4^n=4^6\Rightarrow n=6\)

b) \(5^n=15625\Rightarrow5^n=5^6\Rightarrow n=6\)

c) \(6^{n+3}=216\Rightarrow6^{n+3}=6^3\Rightarrow n+3=3\Rightarrow n=0\)

d) \(x^2=x^3\Rightarrow x^3-x^2=0\Rightarrow x^2\left(x-1\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x-1=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

e) \(3^{x-1}=27\Rightarrow3^{x-1}=3^3\Rightarrow x-1=3\Rightarrow x=4\)

f) \(3^{x+1}=9\Rightarrow3^{x+1}=3^2\Rightarrow x+1=2\Rightarrow x=1\)

g) \(6^{x+1}=36\Rightarrow6^{x+1}=6^2\Rightarrow x+1=2\Rightarrow x=1\)

h) \(3^{2x+1}=27\Rightarrow3^{2x+1}=3^3\Rightarrow2x+1=3\Rightarrow2x=2\Rightarrow x=1\)

i) \(x^{50}=x\Rightarrow x^{50}-x=0\Rightarrow x\left(x^{49}-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x^{49}-1=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0\\x^{49}=1=1^{49}\end{matrix}\right.\)  \(\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

23 tháng 8 2023

4n  =  4096 

4n = 212

n = 12

5n = 15625 

5n = 56

n   = 6

6n+3 = 216

6n+3 = 23.33

6n+3 = 63

n + 3 = 3

 

 

Bài 1: 

\(A=x^2+4x-21-\left(2x^2-2x-5x+5\right)\)

\(=x^2+4x-21-2x^2+7x-5\)

\(=-x^2+11x-26\)

Khi x=0thì A=-26

Khi x=1 thì \(A=-1+11-26=10-26=-16\)

Khi x=-1 thì \(A=-1-11-26=-38\)

26 tháng 2 2017

a) Nhân cả tử và mẫu với 2.4.6...40 ta được :

\(\frac{1.3.5...39}{21.22.23...40}\)=\(\frac{\left(1.3.5...39\right)\left(2.4.6..40\right)}{\left(21.22.23...40\right)\left(2.4.6...40\right)}\)

= \(\frac{1.2.3...39.40}{21.22.23...40.\left(1.2.3...20\right).2^{20}}\)

=\(\frac{1}{2^{20}}\)

b) Nhân cả tử và mẫu với 2.4.6...2n rồi biến đổi như câu a.

26 tháng 2 2017

Cảm ơn bạn thanghoayeu