n + 1 / n - 6
giải hộ mình nha!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Nếu \(n=3k\left(k\in Z\right)\Rightarrow A=n^3-n=27k^3-3k⋮3\)
Nếu \(n=3k+1\left(k\in Z\right)\)
\(\Rightarrow A=n^3-n\)
\(=n\left(n-1\right)\left(n+1\right)\)
\(=\left(3k+1\right).3k.\left(3k+2\right)⋮3\)
Nếu \(n=3k+2\left(k\in Z\right)\)
\(\Rightarrow A=n^3-n\)
\(=n\left(n-1\right)\left(n+1\right)\)
\(=\left(3k+2\right)\left(n+1\right)\left(3k+3\right)⋮3\)
Vậy \(n^3-n⋮3\forall n\in Z\)
\(\Leftrightarrow7x\left(x+5\right)+\left(x-5\right)\left(x+5\right)=0\\ \Leftrightarrow\left(x-5\right)\left(7x+x+5\right)=0\\ \Leftrightarrow\left(x-5\right)\left(8x+5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\x=-\dfrac{5}{8}\end{matrix}\right.\)
\(\Leftrightarrow x^2+x-5x-5-x^2-6x-9-6=0\\ \Leftrightarrow-10x-20=0\\ \Leftrightarrow x=-2\)
a: =152,3+7,7+2021,19-2021,19
=160
b: =7/15*3/14*20/13
\(=\dfrac{7}{14}\cdot\dfrac{3}{15}\cdot\dfrac{20}{13}=\dfrac{1}{2}\cdot\dfrac{1}{5}\cdot\dfrac{20}{13}=\dfrac{2}{13}\)
c: \(=\dfrac{7}{4}\left(\dfrac{13}{12}-\dfrac{10}{12}\right)+\dfrac{5}{6}=\dfrac{7}{16}+\dfrac{5}{6}=\dfrac{61}{48}\)
Gọi số cần tìm có dạng là \(\overline{ab}\)
Theo đề, ta có: a+b=6 và a*b=8
=>a,b là các nghiệm của phương trình: \(x^2-6x+8=0\)
=>(x-2)(x-4)=0
=>x=2 hoặc x=4
=>\(\overline{ab}=24;\overline{ab}=42\)
=>A={24;42}
đề là tìm n nguyên để biểu thức nguyên hả bạn ?
d, \(\frac{3n+1}{n-2}=\frac{3\left(n-2\right)+7}{n-2}=3+\frac{7}{n-2}\)ĐK : \(n\ne2\)
\(\Rightarrow n-2\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
n - 2 | 1 | -1 | 7 | -7 |
n | 3 | 1 | 9 | -5 |
tương tự
P=(n-1)(n mũ 2 +1)
để p nguyện tố:
1) n-1=1 suy ra n=2 và n mũ 2 +1 nguyên tố =5 (chọn) . p=5
2)n mũ 2 +1 =1 và ....
tương tự thôi
Ta có : n2 + 3 chia hết cho n - 1
=> n2 - 1 + 4 chia hết cho n - 1
=> (n - 1)(n + 1) + 4 chia hết cho n - 1
=> 4 chia hết cho n - 1
=> n - 1 thuộc Ư(4) = {1;2;4}
=> n thuộc {2;3;5}
Ta có : n2 + 3 chia hết cho n - 1
\(\Rightarrow\)n2 - 1 + 4 chia hết cho n- 1
\(\Rightarrow\)( n - 1 ) ( n + 1 ) + 4 chia hết cho n - 1
\(\Rightarrow\)4 chia hết cho n - 1
\(\Rightarrow\)n - 1 thuộc Ư (4) = { 1 , 2 , 4 ).
\(\Rightarrow\)n thuộc { 2 , 3 , 5 }
n + 1 / n - 6
n + 1 / n + 1 - 7
=> n + 1 thuộc Ư(7)
Ư(7) = { 1 ; 7 }
Nếu n + 1 = 1 thì n = 0
n + 1 = 7 => n = 6
=> n thuộc { 0 ; 6 }
\(\frac{n+1}{n+6}=\frac{n+1}{n+1-7}\)
=> x + 1 thuộc Ư(7)
Ư(7) = {1;7}
Nếu n + 1 = 1 => n = 1 -1 = 0
Nếu n + 1 = 7 => n = 7 - 1 = 6
Vậy n = {0;6}