6. Tìm số nguyên a để:
a) (2a+8)/ 5 + a/5 là số nguyên
b) (2a+ 9)/ a+3 - (5a+17)/ a+3 - (3a)/a+3 là số nguyên.
Giúp mk nhanh với ạ...
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b, Mk đặt số đó là B nhé để làm cái đề thôi !!!( và viết dưới dạng chia hết nhé ngại viết bằng phân số :))thay dấu chia hết thahf phân số nhé
Để B \(\in Z\)
\(2a+9⋮a+3\)+\(5a+17⋮a+3\)-\(3a⋮a+3\)
\(=2a+9+5a+17-3a⋮a+3\)
\(=4a+26⋮a+3\)
\(=4a+12+14⋮a+3\)
\(=4a+12⋮3+14⋮a+3\)
\(=4\left(a+3\right)⋮a+3+14⋮a+3\)
\(=4+14⋮a+3\in Z\)
\(=\Rightarrow14⋮a+3\in Z\)
\(\Rightarrow14⋮a+3\)
\(\Rightarrow a+3\inƯ\left(14\right)=\left\{\mp1;\mp2;\mp7;\mp14\right\}\)
Ta có bảng
a+3 | -1 | 1 | -2 | 2 | -7 | 7 | -14 | 14 |
a | -4 | -2 | -5 | -1 | -10 | 4 | -17 | 11 |
Đk:
Ta có: A =
A =
Để A là số nguyên <=> là số nguyên <=> 14 (a + 3)
<=> a + 3 Ư(14) = {1; -1; 2; -2; 7; -7}
<=> a ∈{-2;-4;-1;-5;4;-10}
Đk: \(a\ne-3\)
Ta có: A = \(\frac{2a+9}{a+3}+\frac{5a+17}{a+3}-\frac{3a}{a+3}=\frac{2a+9+5a+17-3a}{a+3}\)
A = \(\frac{4a+26}{a+3}=\frac{4\left(a+3\right)+14}{a+3}=4+\frac{14}{a+3}\)
Để A là số nguyên <=> \(\frac{14}{a+3}\)là số nguyên <=> 14 \(⋮\)(a + 3)
<=> a + 3 \(\in\)Ư(14) = {1; -1; 2; -2; 7; -7}
Lập bảng:
a + 3 | 1 | -1 | 2 | -2 | 7 | -7 |
a | -2 | -4 | -1 | -5 | 4 | -10 |
Vậy ...
Cộng tử ở 3 p/s lại với nhau, mẫu giữ nguyên
Cộng 2a;5a;3a lại=>10a
Cộng 9+17=>26
rồi áp dụng dạng toán chia hết là đc
gọi tổng đó là M
M=2a+9/a+3 + 5a+17/a+3 + 3a/a+3
=2a+9+5a+17+3a/a+3
=10a+29/a+3
để M nguyên thì 10a+29 chia hết a+3
ta có:
a+3 chia hết a+3
=>10(a+3) chia hết a+3
10a + 30 chia hết a+3
mà 10a+29 chia hết a+3
=> 10a+30-(10a+29) chia hết a+3
1 chia hết a+3
=> a+3 thuộc ước của 1 thì a=-2;-4
thay a=-2 đc:
M=10.(-2)+29/-2+3=9
M=10.(-4)+29/-4+3=11
vậy M đạt giá trị nguyên khi và chỉ khi a=-2;-4
\(a,\dfrac{2a+8}{5}+\dfrac{a}{5}=\dfrac{2a+8+a}{5}\\ =\dfrac{3a+8}{5}\)
Để : \(\dfrac{3a+8}{5}\in Z\)
`=>3a+8=5k (k\in Z)`
`=>3a=5k-8`
\(=>a=\dfrac{5k-8}{3}\) `(k\in Z)`
\(b,\dfrac{2a+9}{a+3}-\dfrac{5a+17}{a+3}-\dfrac{3a}{a+3}\\ =\dfrac{2a+9-5a-17-3a}{a+3}\\ =\dfrac{-6a-8}{a+3}=\dfrac{-6\left(a+3\right)+10}{a+3}\\ =-6+\dfrac{10}{a+3}\)
Để biểu thức trên là số nguyên
\(=>\dfrac{10}{a+3}\in Z\)
\(=>10⋮\left(a+3\right)\\ =>a+3\inƯ\left(10\right)=\left\{\pm1;\pm2;\pm5;\pm10\right\}\\ =>a\in\left\{-2;-4;-1;-5;2;-8;7;-13\right\}\)