Tìm max(giá trị lớn nhất)
D=-(2x-4)2+7
Mk sẽ tick cho ai làm đầu tiên nhưng phải Đ và đầy đủ cách giải
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm max(giá trị lớn nhất)
D=-(2x-4)2+7
Mk sẽ tick cho ai làm đầu tiên nhưng phải Đ và đầy đủ cách giải
Vì trong 1 tích , nếu 1 thừa số gấp lên n lần và thừa số kia giữ nguyên thì tích đó gấp lên n lần và ngược lại
Vậy tích của 2 số là : 8400:2=4200
k mình nha
\(\left(x^2+1\right)+4=x^2+5\)
\(x^2\ge0\) với mọi x đẳng thức chỉ khi x=0
\(x^2+5\ge5\) => GTNN là 5 khi x=0
Để F là giá trị nhỏ nhất thì x phải đạt giá trị nhỏ nhất là 0
=>F=(x2 + 1)+4=(02 +1)+4
=(1+1)+4
=2+4
=6 Vậy F nhận giá trị nhỏ nhất là 6
Ta có
x ≥ 0 √ x ∈ Z
=> x2 + 1 ≥ 1
=> (x2 + 1)2 ≥ 12 = 1
=> F = (x2 + 1)2 + 4 ≥ 1 + 4 = 5
=> F = (x2 + 1)2 + 4 ≥ 5
Dấu "=" xảy ra khi x2 = 0 => x = 2
Vậy GTNN của F là 5 tại x = 0
Chỗ kia mình ấn nhầm ra bạn
Dấu "=" xảy ra khi x2 = 0 => x = 0
Đặt biểu thức cần tìm =A
Theo bài ra ta có:
A=2.1+3.(-1)+...+199(-1)+200.1
=2-3+4-5+...-199+200
=(-1)+(-1)+...+(-1)+200(có [(200-2):2=99 số -1]
=-99+200
=101
Ta có: \(\frac{2x+5}{x+2}=\frac{2x+4}{x+2}+\frac{1}{x+2}=\frac{2.\left(x+2\right)}{x+2}+\frac{1}{x+2}=2+\frac{1}{x+2}\)
Nên \(\frac{2x+5}{x+2}=2+\frac{1}{x+2}\)
Để \(\frac{2x+5}{x+2}\) có giả trị nguyên thì \(2+\frac{1}{x+2}\) có giá trị nguyên
Nên x + 2 thuộc Ư(1) = {-1;1}
Ta có bảng :
x + 2 | -1 | 1 |
x | -3 | -1 |
Vậy x = {-3;-1}
Ta có : \(A=\left|x-5\right|-\left|x-7\right|\ge\left|x-5-x+7\right|=2\)
Vậy \(A_{min}=2\) khi \(5\le x\le7\)
Ta có : (2x-4)^2 \(\ge\)0
=> -(2x-4)^2 \(\le\) 0
=> -(2x-4)^2+7 \(\le\) 7
Dấu = xảy ra <=> (2x-4)^2 = 0
2x-4=0
2x=4
x=2
Vậy MAX của D = 7 <=> x=2
Dễ ợt
Ta có : D=-(2x-4) <= 0 với mọi x
Mà 7>0
==> -(2x-4)+7 <= 7 với mọi x
Dấu = xảy ra khi -(2x-4)=0
x =2
Vậy giá trị lớn nhất của D =7 khi x=2