Cho tam giác ABC vuông tại A , AB=AC. Qua A vẽ đường thẳng d sao cho B và C nằm cùng phía đối với đường thẳng d. Kẻ BH và CK vuông góc với d. Chứng minh:
a) AH=CK
b) HK = BH + CK
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có góc HAB + góc BAC +góc CAK = 180o (kề bù)
=> góc HAB + góc KAC + 90o=180o
=> góc HAB + góc KAC = 90o (1)
mặt khác
Xét tam giác AKC vuông tại K có
góc KAC + góc KCA = 90o (2)
(1)&(2) => góc HAB = góc KCA
xét tam giác vuông HAB và tam giác vuông KCA có
AB = AC (gt)
góc HAB = góc KCA (cmt)
=> tam giác HAB = tam giác KCA ( chgn )
=> AH = CK (cctư)
a) Ta có : \(\widehat{B_1}=\widehat{A_2}\)(cùng phụ với góc A1)
Xét \(\Delta\)ABH và \(\Delta\)CAK có :
AB = AC(gt)
\(\widehat{BAH}=\widehat{CAK}\left(=90^0\right)\)
=> \(\Delta ABH=\Delta CAK\left(ch-gn\right)\)
=> AH = CK
b) Ta có AH = CK
Xét \(\Delta AKC\)và \(\Delta BHA\)có :
AC = AB(cmt)
\(\widehat{KCA}=\widehat{HBA}\left(=90^0\right)\)
=> \(\Delta AKC=\Delta BHA\left(ch-gn\right)\)
=> AK = BH(hai cạnh tương ứng)
Do đó : AH + AK = CK + BH
Vậy HK = CK + BH
Hình hơi rộng nên bạn qua thống kê hỏi đáp xem hình rõ hơn nhé
-Sửa đề: Cho tam giác ABC vuông tại A, AB=AC. Qua A vẽ đường thẳng d sao cho B và C nằm cùng phía đối với đường thẳng d. Qua B và C vẽ đường thẳng vuông góc với d lần lượt tại H,K. CMR:
a) AH=CK
b) HK=BH+CK
Δ BHA : góc BHA = 90* (gt)
=> góc HBA + góc HAB = 90* (định lý)
Δ AKC : góc AKC = 90* (gt)
=> góc CAK + góc KCA = 90* (định lý)
Ta có góc : HAB + BAC + CAK = 180*
=> góc : HAB + 90* + CAK = 180*
=> góc : HAB + CAK = 90
Ta có góc : CAK + HAB = 90* (cmt)
mà góc : CAK + KCA = 90* (cmt)
=> góc : CAK + HAB = CAK + KCA (t/c b.cầu)
=> góc : HAB = KCA (chuyển vế đổi dấu)
Xét Δ HBA và Δ KAC có :
BA = CA (gt)
góc BAH = góc KCA (cmt)
góc H = góc K = 90*
=> Δ HBA = Δ KAC ( cạnh huyền - góc nhọn )
=> AH = CK (c.t.ứng) (dpcm A)
=> BH = AK (c.t.ứng)
có HK = AH + AK
mà AH = CK (cmt) , BH = AK (cmt)
=> HK = BH + CK (t/c b.cầu) (dpcm B)
cảm ơn bạn nhiều nha