34 < 1/9 . 27n < 310
Tìm số nguyên n
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
(n2−8)2+36
=n4−16n2+64+36
=n4+20n2+100−36n2
=(n2+10)2−(6n)2
=(n2+10+6n)(n2+10−6n)
Mà để (n2+10+6n)(n2+10−6n) là số nguyên tố thì n2+10+6n=1 hoặc n2+10−6n=1
Mặt khác ta có n2+10−6n<n2+10+6n n2+10−6n=1 (n thuộc N)
n2+9−6n=0 hay (n−3)2=0 n=3
Vậy với n=3 thì (n2−8)2+36 là số nguyên tố
_________________
a: \(A=28n^2+27n+5\)
\(=28n^2+20n+7n+5\)
\(=4n\left(7n+5\right)+\left(7n+5\right)\)
\(=\left(4n+1\right)\left(7n+5\right)\)
Nếu n=0 thì \(A=\left(4\cdot0+1\right)\left(7\cdot0+5\right)=1\cdot5=5\) là số nguyên tố
=>Nhận
Khi n>0 thì (4n+1)(7n+5) sẽ là tích của hai số nguyên dương khác 1
=>A=(4n+1)(7n+5) không thể là số nguyên tố
=>Loại
Vậy: n=0
b: \(B=n\left(n^2+n+7\right)-2\left(n^2+n+7\right)\)
\(=\left(n^2+n+7\right)\left(n-2\right)\)
Để B là số nguyên tố thì B>0
=>\(\left(n^2+n+7\right)\left(n-2\right)>0\)
=>n-2>0
=>n>2
\(B=\left(n^2+n+7\right)\left(n-2\right)\)
TH1: n=3
\(B=\left(3^2+3+7\right)\left(3-2\right)=9+3+7=9+10=19\) là số nguyên tố
=>Nhận
TH2: n>3
=>n-2>1 và \(n^2+n+7>1\)
=>\(B=\left(n-2\right)\left(n^2+n+7\right)\) là tích của hai số nguyên dương lớn hơn 1
=>B chắc chắn không thể là số nguyên tố
=>Loại
c: \(C=n\left(n^2+n+7\right)+\left(n^2+n+7\right)\)
\(=\left(n^2+n+7\right)\left(n+1\right)\)
TH1: n=0
=>\(C=\left(0+0+7\right)\left(0+1\right)=7\cdot1=7\) là số nguyên tố
=>Nhận
TH2: n>0
=>n+1>0 và \(n^2+n+7>1\)
=>\(C=\left(n+1\right)\left(n^2+n+7\right)\) là tích của hai số nguyên dương lớn hơn 1
=>C chắc chắn không thể là số nguyên tố
=>Loại
d: \(D=n^2-1=\left(n-1\right)\left(n+1\right)\)
Để D là số nguyên tố thì D>0
=>(n-1)(n+1)>0
TH1: \(\left\{{}\begin{matrix}n-1>0\\n+1>0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}n>1\\n>-1\end{matrix}\right.\)
=>n>1
TH2: \(\left\{{}\begin{matrix}n-1< 0\\n+1< 0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}n< 1\\n< -1\end{matrix}\right.\)
=>n<-1
Khi n=2 thì \(D=2^2-1=4-1=3\) là số nguyên tố(nhận)
Khi n>2 thì n-1>1 và n+1>3>1
=>D=(n-1)(n+1) là tích của hai số tự nhiên lớn hơn 1
=>D không là số nguyên tố
=>Loại
Khi n=-2 thì \(D=\left(-2\right)^2-1=4-1=3\) là số nguyên tố
=>Nhận
Khi n<-2 thì n-1<-3 và n+1<-1
=>D=(n-1)(n+1)>0 và D bằng tích của hai số nguyên dương lớn hơn 1
=>D không là số nguyên tố
=>Loại
a) \(\frac{1}{9.27n}=3n\)
=> \(\frac{1}{3^5n}=3n\)
=> \(\frac{1}{n}3^{-5}=3n\)
=> \(\frac{1}{n}:n=3:3^{-5}\)
=> \(n^{-2}=3^{-4}=9^{-2}\)
Vậy n=9
1. a)
Ta có .
TH1: .
Và . Từ đây ta suy ra .
Khả năng 1. và .
Khả năng 2. . Khi đó .
+ Với thì .
+ Với thì .
Khả năng 3. Khi đó .
+ Với thì .
+ Với thì .
TH2: .
Khi đó ta cũng có .
Tiếp tục giới hạn ta cũng được . Xét 3 khả năng:
Khả năng 1: Với . Và .
Khả năng 2: Với . Ta cũng có: .
+ Với thì .
+ Với thì .
Khả năng 3: Với . Cũng có .
+ Với thì .
+ Với thì .
TH3: . Và .
P/s: Làm một hồi rồi không biết đâu là cái kết quả nữa ???
Có \(B=n^4-27n^2+121\)
\(=n^4+22n^2+121-49n^2\)
\(=\left(n^2+11\right)^2-\left(7n\right)^2\)
\(=\left(n^2+11-7n\right)\cdot\left(n^2+11+7n\right)\)
Vì \(n\in N\)nên \(n^2+7n+11>11\)
Nếu \(n^2-7n+11< 0\Rightarrow B< 0\left(loại\right)\)
Nếu \(n^2-7n+11=0\Rightarrow B=0\left(loại\right)\)
Nếu \(n^2-7n+11>1\)(loại vì B là tích của 2 số nguyên dương > 1 nên ko là số nguyên tố)
Vậy nên \(n^2-7n+11=1\)
\(\Leftrightarrow n^2-7n+10=0\)
\(\Leftrightarrow n^2-2n-5n+10=0\)
\(\Leftrightarrow\left(n-2\right)\cdot\left(n-5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}n-2=0\\n-5=0\end{cases}\Rightarrow\orbr{\begin{cases}n=2\\n=5\end{cases}}}\)
Vậy.............
Ta có với n chẵn thì giá trị biểu thức trên luôn chẵn
Xét trường hợp n lẻ:
=> n4 lẻ, 6n3 chẵn, 27n2 lẻ, 54n chẵn, 32 chẵn
=> n4 + 6n3 + 272 + 54 + 32 là số chẵn
Vậy, giá trị biểu thức đã cho luôn chẵn với n thuộc Z
\(B=n^4-27n^2+121\)
\(B=n^4+22n^2+121-49n^2\)
\(B=\left(n^2+11\right)^2-49n^2\)
\(B=\left(n^2+11-7n\right)\left(n^2+11+7n\right)\)
Vì n là số tự nhiên => \(n^2+11+7n>11\)
Để B là số nguyên tố
=> \(n^2-7n+11=1\)
\(\Leftrightarrow\orbr{\begin{cases}n=2\\n=5\end{cases}}\)
n=6;7;8;9;10