K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 9 2022

Bài toán nào em nhỉ?

13 tháng 6 2016
 Ta có hình vẽ như sau:

Xét tứ giác CEHD ta có:

Góc CEH = 900 (Vì BE là đường cao)

Góc CDH = 900 (Vì AD là đường cao)

=> góc CEH + góc CDH = 1800

Mà góc CEH và góc CDH là hai góc đối của tứ giác CEHD. Do đó CEHD là tứ giác nội tiếp.

1: AB<AC

=>góc C<góc B

Xét (O) có

góc ACB=1/2*sđ cung AB

góc ABC=1/2*sđ cung AC

mà góc ACB<góc ABC

nên sđ cung AB<sđ cung AC

3: góc AEH+góc AFH=180 độ

=>AEHF nội tiếp

4: 

góc BFC=góc BEC=90 độ

=>BFEC nội tiếp

=>góc HFE=góc HBC

=>góc HFE=góc HNM

mà hai góc này ở vị trí đồng vị

nên FE//MN

19 tháng 7 2017

Đề kiểm tra Toán 9 | Đề thi Toán 9

a) Xét tứ giác CEHD có:

∠(CED) = 90 0  (do BE là đường cao)

∠(HDC) =  90 0  (do AD là đường cao)

⇒ ∠(CED) + ∠(HDC) = 180 0

Mà ∠(CED) và ∠(HDC) là 2 góc đối của tứ giác CEHD nên CEHD là tứ giác nội tiếp

14 tháng 3 2019

Đề kiểm tra Toán 9 | Đề thi Toán 9

b) Xét tứ giác BFEC có:

∠(BFC) = 90 0  (Do CF là đường cao)

∠(BEC ) =  90 0  (Do BE là đường cao)

⇒ E và F cùng nhìn BC dưới một góc bằng nhau

⇒ Tứ giác BFEC nội tiếp được đường tròn

⇒ Bốn điểm B, E, F, C cùng nằm trên đường tròn

a: góc BDH+góc BFH=180 độ

=>BDHF nội tiếp

góc BFC=góc BEC=90 dộ

=>BFEC nội tiếp

b: góc FEB=góc BAD

góc DEB=góc FCB

mà góc BAD=góc FCB

nên góc FEB=góc DEB

=>EB là phân giác của góc FED

c: Kẻ tiếp tuyến Ax của (O)

=>góc xAC=góc ABC=góc AEF

=>Ax//FE

=>FE vuông góc OA

=>OA vuông góc IK

Sửa đề: M đối xứng H qua BC

Gọi AD là đường kính, I là giao của HD và BC

góc ABD=1/2*sđ cung AD=90 độ

=>BD//CH

góc ACD=1/2*sđ cung AD=90 độ

=>CD//BH

mà BD//CH

nên BHCD là hình bình hành

=>BC căt HD tại trung điểm của mỗi đường

=>I là trung điểm chung của HD và BC và BH//CD

góc AMD=1/2*sđ cung AD=90 độ

=>MD vuông góc AM

=>MD//BC

=>BCDM là hình thang cân

=>góc MBC=góc DCB=góc HBC

=>BC là phân giác của góc HBM

mà BC là trung tuyến của ΔHBM

nên ΔHMB cân tại B

=>BC là trug trực của MH

=>M đối xứng H qua BC

10 tháng 4 2017

Đề kiểm tra Toán 9 | Đề thi Toán 9

c) Xét ΔAEH và ΔADC có:

∠(AEH) = ∠(ADC) =  90 0

∠(DAC) là góc chung

Đề kiểm tra Toán 9 | Đề thi Toán 9

⇒ AE.AC = AD.AH

Xét Δ BEC và ΔADC có:

∠(BEC) = ∠(ADC) = 90 0

∠(ACD) là góc chung

⇒ ΔBEC ∼ ΔADC (g.g)

Đề kiểm tra Toán 9 | Đề thi Toán 9