Cho ΔABC, M là trung điểm của BC. Trên tia đối của tia MA, lấy điểm E sao cho ME = MA.
a. Chứng minh AC // BE.
b. Gọi I là một điểm trên AC, K là một điểm trên EB sao cho AI = EK. Chứng minh 3 điểm I, M, K thẳng hàng.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác ABEC có
M là trung điểm của BC
M là trung điểm của AE
Do đó: ABEC là hình bình hành
Suy ra: AC//BE
a) xét
\(\Delta BME\text{VÀ}\Delta CMA\\ BM=CM\left(gt\right)\\ \widehat{BME}=\widehat{CMA}\\ MA=ME\left(gt\right)\\ \Delta BME=\Delta CMA\left(c-g-c\right)\Rightarrow BE=AC\\ \widehat{EMB}=\widehat{ACM}\left(\text{MÀ Ở VỊ TRÍ SO LE TRONG}\right)\\ \Rightarrow AC\text{//}BE\)
:V lười gõ tiếp quá ;-;
mà bạn cho mình hỏi. =) mình thấy bạn đăng toàn câu hỏi nâng cao bạn đang thi HSG hả ;-; mình 24/1 thi rồi =) không biết bạn có thi không =)))
a, xét tam giác MAC và tâm giác MEB
có{ME=MA(gt);BM=MC;tam giác MAC= tam giác MEB(c-g-c)
=> AC = EB=>EMB^=ACM^( mà ở vị trí so le trong)
=> AC// BE
b, Xét tam giác AIM và tam giác KME
có { AI=KE(gt);M3^=M4^; AM=ME(gt)
=> tam giác AIM= tam giác KME(c-g-c)
=> IM=MK
=> I,M,K thẳng hàng
c, ta có : tam giác HEB
có { H^ =90°;B^ =50°;MEB^=25°
=> H^ + B^ + MEB^ +HEM^ =180°
=> 90°+50°+25°+HEM^ =180°
=> HEM^ =180°-90°-50°-25°
=> HEM^=15°
lại có tam giác BME
{B^=50°;E^=25°
=> B^+E^+BME^= 180°
=> BME^ = 180° -25°-50°
=> BME^ =105°
Hơi khó nhìn,nếu bạn không hiểu phần nào bạn hỏi mình nhé.Nếu bạn có ý kiến gì về bài giải và phương pháp giải của mình bạn có thể hỏi mình nha.Mình sẽ trả lời bạn.
bài này mình chịu mình không giỏi hình
CHÚC BẠN HỌC GIỎI
TK MÌNH NHÉ
xét \(\Delta BME \)và \(\Delta CMA\)có
BM = CM (gt)
AM = ME (gt)
\(\widehat{BME}=\widehat{AMC}\)(đối đỉnh)
DO ĐÓ \(\Delta BME=\Delta CMA\left(c.g.c\right)\)
suy ra góc EBM = góc ACM ( 2 góc tương ứng )
mà 2 góc này ở vị trí so le trong nên AC // BE
b) ta có \(\widehat{AMB}+\widehat{AMI}+\widehat{IMC}=180^o\)
MÀ \(\widehat{IMC}=\widehat{BMK}\)(ĐỐI ĐỈNH)
suy ra \(\widehat{AMB}+\widehat{AMI}+\widehat{BMK}=180^o\)
hay I,M,K thẳng hàng