giải pt nghiệm nguyên x3+(x+1)3+(x+2)3=(x+3)3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x^3-4(x+2)=0
x^3-4x+8-8=0
x^3-4x=0
x(x^2-4)=0
=> x=0 va x^2=4
x=0 va x = -2 va 2
vậy phương trình có 3 nghiệm
\(x^3+y^3=5+x^2y+xy^2\Rightarrow x^3+y^3-\left(x^2y+xy^2\right)=5\)
\(\Rightarrow\left(x+y\right)\left(x^2-xy+y^2\right)-xy\left(x+y\right)=5\)
\(\Rightarrow\left(x+y\right)\left(x-y\right)^2=5\)
Vì \(\left\{{}\begin{matrix}\left(x-y\right)^2\ge0\\5>0\end{matrix}\right.\Rightarrow x+y>0\)
Lại có \(\left\{{}\begin{matrix}\left(x-y\right)^2\in N\\\left(x-y\right)^2< 5\end{matrix}\right.\) và \(\left(x-y\right)^2\) là số chính phương
\(\Rightarrow\left(x-y\right)^2=1\Rightarrow\left\{{}\begin{matrix}x+y=5\\x-y=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=3\\y=2\end{matrix}\right.\)
x^3+x^2+x+1=y^3 => y^3 - x^3 = x^2 + x + 1 = (x + 1/2)^2 + 3/4 > 0
=> y^3 > x^3 (1)
mặt khác:
5x^2 +11x+5 =5(x+11/10)^2 +19/20 > 0
y^3 = x^3 + x^2 + x +1 < x^3 + x^2 + x +1 + 5x^2 + 11x +5 = x^3 +6x^2 +12x +8 = (x + 2)^3 (2)
(1) và (2) => y^3 = (x + 1)^3 => y = x +1
=> x^3+x^2 +x +1 = x^3 +3x^2 +3x +1 = y^3
<=> 2x^2 + 2x =0
<=> 2x(x+1)=0
=> x = 0 và y=1
hoặc x = -1 và y = 0