K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 6 2015

xóa ngay , sữa nội dung lại , nhanh lên , rồi tính
 

24 tháng 7 2019

undefined

13 tháng 12 2018

a) \(A=2^{15}+2^{18}\)

\(A=2^{15}\left(1+2^3\right)\)

\(A=2^{15}\left(1+8\right)\)

\(A=2^{15}\cdot9⋮9\left(đpcm\right)\)

13 tháng 12 2018

câu B phải là c/m nó chia hết cho 30 nhé!

\(B=5^{n+2}+5^{n+1}=5^n\left(5^2+5\right)=30.5^n⋮30^{\left(đpcm\right)}\)

6 tháng 10 2017

Câu 1:

a) n+4 chia hết cho n

suy ra 4 chia hết cho n(vì n chia hết cho n)

suy ra n thuộc Ư(4) {1;2;4}

Vậy n {1;2;4}

b) 3n+7 chia hết cho n

suy ra 7 chia hết cho n(vì 3n chia hết cho n)

suy ra n thuộc Ư(7) {1;7}

Vậy n {1;7}

c) 27-5n chia hết cho n

suy ra 27 chia hết cho n(vì 5n chia hết cho n)

suy ra n thuộc Ư(27) {1;3;9;27}

Vậy n {1;3;9;27}

d) n+6 chia hết cho n+2 

suy ra (n+2)+4 chia hết cho n+2

suy ra 4 chia hết cho n+2(vì n+2 chia hết cho n+2)

suy ra n+2 thuộc Ư(4) {1;2;4}

n+2 bằng 1 (loại)

n+2 bằng 2 suy ra n bằng 0

n+2 bằng 4 suy ra n bằng 2

Vậy n {0;2}

e) 2n+3 chia hết cho n-2

suy ra 2(n-2)+7 chia hết cho n-2

suy ra 7 chia hết cho n-2(vì 2(n-2) chia hết cho n-2)

suy ra n-2 thuộc Ư(7) {1;7}

n-2 bằng 1 suy ra n bằng 3

n-2 bằng 7 suy ra n bằng 9

Vậy n {3;9}

25 tháng 10 2023

Bài 1:vì 15 chia hết cho 5 suy ra 2022.15 chia hết cho 5

         vì 25 chia hết cho 5 suy ra 2022.15 + 25 chia hết cho 5

 

1 tháng 10 2018

Ta có: \(2^{17}+2^{14}\)

\(=2^{14}\left(2^3+1\right)=2^{14}\times9⋮9\)

\(15^3-25^2\)

\(=3^3.5^3-5^4\)

\(=5^3\left(27-5\right)=5^3.2.11⋮11\)

1 tháng 10 2018

\(2^{17}+2^{14}=2^{14}\left(2^3+1\right)=2^{14}\cdot9\Rightarrow2^{17}+2^{14}⋮9\)

14 tháng 12 2016

1a       S1=1+21+22+...+239

        S1=(1+2+22+23).1+.........(1+2+22+23).236

S1=15.1+...........15.236 chia hết cho 15

8 tháng 7 2019

1.

b)  \(S2=125^7-25^9\)

          \(=5^{21}-5^{18}=5^{18}\left(5^3-1\right)\) 

          \(=5^{18}.124⋮124\) 

=> S2 \(⋮124\left(đpcm\right)\) 

hc tốt

20 tháng 9 2023

a) Xét hiệu : \(n^5-n\)

Đặt : \(A\text{=}n^5-n\)

Ta có : \(A\text{=}n.\left(n^4-1\right)\text{=}n.\left(n^2-1\right)\left(n^2+1\right)\)

\(A\text{=}n.\left(n+1\right).\left(n-1\right).\left(n^2+1\right)\)

Vì : \(n.\left(n+1\right)\) là tích hai số tự nhiên liên tiếp .

\(\Rightarrow A⋮2\)

Ta có : \(A\text{=}n\left(n+1\right)\left(n-1\right)\left(n^2+1\right)\)

\(A\text{=}n\left(n+1\right)\left(n-1\right)\left(n^2-4+5\right)\)

\(A\text{=}n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)+5n.\left(n+1\right)\left(n-1\right)\)

Ta thấy : \(\left\{{}\begin{matrix}n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)⋮5\\5n\left(n-1\right)\left(n+1\right)⋮5\end{matrix}\right.\) vì tích ở trên là tích của 5 số liên tiếp nên chia hết cho 5.

Do đó : \(A⋮10\)

\(\Rightarrow A\) có chữ số tận cùng là 0.

Suy ra : đpcm.

b) Vì \(n⋮3̸\) nên n có dạng : \(3k+1hoặc3k+2\left(k\in N\right)\)

Với : n= 3k+1

Thì : \(n^2\text{=}9k^2+6k+1\)

Do đó : \(n^2\) chia 3 dư 1.

Với : n=3k+2

Thì : \(n^2\text{=}9k^2+12k+4\text{=}9k^2+12k+3+1\)

Do đó : \(n^2\) chia 3 dư 1.

Suy ra : đpcm.