Cho M=\(\frac{a}{a+b}\)+\(\frac{b}{b+c}\)+\(\frac{c}{c+a}\)
a,b,c \(\in\)\(^{Z^+}\)
Chứng minh rằng M không thể là số nguyên
Các bn nêu cách giải ra giúp mk
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gia su : a/a+b > a/a+b+c (a,b,c THUOC Z )
b/b+c > b/b+c+a
c/c+a > c/c+a+b
=> M > 1 (1)
Mat khac , ta lai co : a/a+c < 1 => a/a+b < a+c/a+b+c
b/b+c < b+a/b+c+a
c/c+a < c+b/c+a+b
=> M < 2 (2)
Tu (1) VA (2) => 1 < M < 2 => M ko phai la so nguyen.
Dung 1000000000% luon do, bai nay thay giao mk chua rui!!!
********** K MK NHA!!!
Sửa đề trong bài làm luôn nhé
\(\frac{x}{a+2b-c}=\frac{y}{2a+b+c}=\frac{z}{4b+c-4a}\)
\(\Rightarrow\frac{a+2b-c}{x}=\frac{2a+b+c}{y}=\frac{4b+c-4a}{z}\)
\(\Rightarrow\frac{a+2b-c}{x}=\frac{2\left(2a+b+c\right)}{2y}=\frac{4b+c-4a}{z}=\frac{9a}{x+2y-z}\left(1\right)\)
\(\Rightarrow\frac{2\left(a+2b-c\right)}{2x}=\frac{2a+b+c}{y}=\frac{4b+c-4a}{z}=\frac{9b}{2x+y+z}\left(2\right)\)
\(\Rightarrow\frac{-4\left(a+2b-c\right)}{-4x}=\frac{4\left(2a+b+c\right)}{4y}=\frac{4b+c-4a}{z}=\frac{9c}{-4x+4y+z}\left(3\right)\)
Từ (1), (2), (3) ta có ĐPCM
Ta có \(\frac{x}{a+2b-c}=\frac{y}{2a+b+c}=\frac{z}{4b+c-4a}\)
\(\Rightarrow\frac{x}{a+2b-c}=\frac{2y}{4a+2b+c}=\frac{z}{4b+c-4a}=\frac{x+2y-z}{9a}\left(1\right)\)
\(\Rightarrow\frac{2x}{2a+4b-2c}=\frac{y}{2a+b+c}=\frac{z}{4b+c-4a}=\frac{2x+y+z}{9b}\left(2\right)\)
\(\Rightarrow\frac{4x}{4a+8b-4c}=\frac{4y}{8a+4b+4c}=\frac{z}{4b+c-4a}=\frac{4y+z-4a}{9c}\left(3\right)\)
Từi (1),(2),(3)
còn j giải típ nha
@@@@@@@@@@@@
Cho a, b, c > 0. Chứng minh rằng : \(M=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\)không là số nguyên