Tam giác ABC vuông tại A.Trên AB lấy điểm D,trên AC lấy điểm E. chứng minh : CD^2 - BC^2= ED^2 - BE^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng định lí Pytago cho các tam giác vuông ta có :
\(CD^2=AC^2+DA^2\)
\(BC^2=AB^2+AC^2\)
\(\Rightarrow CD^2-BC^2=\left(AC^2+AD^2\right)-\left(AB^2+AC^2\right)=AD^2-AB^2\left(1\right)\)
------------
\(ED^2=DA^2+AE^2\)
\(BE^2=AE^2+AB^2\)
\(\Rightarrow ED^2-BE^2=\left(DA^2+AE^2\right)-\left(AE^2+AB^2\right)=AD^2-AB^2\left(2\right)\)
Từ ( 1 ) và ( 2 ) \(\Rightarrow CD^2-BC^2=ED^2-BE^2\left(đpcm\right)\)
Chúc bạn học tốt !!!
a) Có AH2=HF.HD \(\rightarrow\)\(\frac{AH}{HF}=\frac{HD}{AH}\)
Xét \(\Delta\)AHD và \(\Delta\)FHA có:
\(\widehat{AHD}=\widehat{FHA}=90^o\)
\(\frac{AH}{HF}=\frac{HD}{AH}\)( chứng minh trên)
\(\rightarrow\Delta\)AHD\(\approx\)\(\Delta\)FHA (c-g-c)
\(\rightarrow\)\(\widehat{ADH}=\widehat{FAH}\)( 2 góc tương ứng)
mà \(\widehat{ADH}+\widehat{HAD}=90^o\)
nên \(\widehat{FAH}+\widehat{HAD}=90^o\)
hay \(\widehat{FAD}=90^o\)\(\rightarrow\Delta\)ADF vuông tại A
2: Xét tứ giác ABDE có
C là trung điểm của BE
C là trung điểm của AD
Do đó: ABDE là hình bình hành
Suy ra: AB//DE