(ab * 0, c + 0, d ) * 0, d=19, 83
Tìm a, b, c, d
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đề bài ta có :
\(\dfrac{a}{b}=\dfrac{c}{d}\)
\(\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)
Đặt \(\dfrac{a}{c}=\dfrac{b}{d}=k\) ( 1 )
Theo tính chất dãy tỉ số bằng nhau ta có :
\(k=\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}\)
\(k^2=\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}\) ( 2 )
Mà từ ( 1 ) = > \(k^2=\dfrac{a}{c}.\dfrac{b}{d}=\dfrac{ab}{cd}\) ( 3 )
Từ ( 2 ) , ( 3 )
= > \(\dfrac{ab}{cd}=\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}\) ( đpcm )
a/b<c/d
mà b>0 và d>0
nên \(\dfrac{a\cdot b}{b\cdot b}< \dfrac{c\cdot d}{d\cdot d}\)
=>ab/b^2<cd/d^2
=>\(\dfrac{ab}{b^2}< \dfrac{ab+cd}{b^2+d^2}< \dfrac{cd}{d^2}=\dfrac{c}{d}\)
=>\(\dfrac{a}{b}< \dfrac{ab+cd}{b^2+d^2}< \dfrac{c}{d}\)