K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 1 2017

\(A=a-2+3-2a-5+a=\left(a-2a+a\right)+\left(-2+3-5\right)=-4\)

a: \(A=\dfrac{3}{5}\cdot xy\cdot\dfrac{4}{25}x^2y^4z^2=\dfrac{12}{125}x^3y^5z^2\)

b: Hệ số là 12/125

Bậc là 10

23 tháng 8 2021

\(A=\left(5a-5\right)^2+10\left(a-3\right)\left(1+a\right).3a\)

\(A=25a^2-50a+25+30a\left(a-3+a^2-3a\right)\)

\(A=25a^2-50a+25+30a^2-90a+30a^3-90a^2\)

\(A=30a^3-35a^2-140a+25\)

Ta có: \(A=\left(5a-5\right)^2+10\left(a-3\right)\left(a+1\right)\cdot3a\)

\(=25a^2-50a+25+30a\left(a^2-2a-3\right)\)

\(=25a^2-50a+25+30a^3-60a^2-90a\)

\(=30a^3-35a^2-140a+25\)

5 tháng 7 2021

a) Pt \(\Leftrightarrow\sqrt{\left(x-2\right)^2}=5\Leftrightarrow\left|x-2\right|=5\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=5\\x-2=-5\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=7\\x=-3\end{matrix}\right.\)

Vậy...

b)Đk: \(x\ge-1\)

Pt \(\Leftrightarrow4\sqrt{x+1}-3\sqrt{x+1}+2\sqrt{x+1}=16-\sqrt{x+1}\)

\(\Leftrightarrow4\sqrt{x+1}=16\)\(\Leftrightarrow x+1=16\)\(\Leftrightarrow x=15\) (tm)

Vậy...

\(A=\dfrac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\dfrac{2a+\sqrt{a}}{\sqrt{a}}+1\) (a>0)

\(=\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{a-\sqrt{a}+1}-\dfrac{\sqrt{a}\left(2\sqrt{a}+1\right)}{\sqrt{a}}+1\)

\(=a+\sqrt{a}-\left(2\sqrt{a}+1\right)+1=a-\sqrt{a}\)

b) \(A=a-\sqrt{a}=a-2.\dfrac{1}{2}\sqrt{a}+\dfrac{1}{4}-\dfrac{1}{4}=\left(\sqrt{a}-\dfrac{1}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\)

Dấu "=" xảy ra khi \(\sqrt{a}=\dfrac{1}{2}\Leftrightarrow a=\dfrac{1}{4}\left(tmđk\right)\) 

Vậy \(A_{min}=-\dfrac{1}{4}\)

5 tháng 7 2021

a) \(\sqrt{x^2-4x+4}=5\Rightarrow\sqrt{\left(x-2\right)^2}=5\Rightarrow\left|x-2\right|=5\)

\(\Rightarrow\left[{}\begin{matrix}x-2=5\\x-2=-5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=7\\x=-3\end{matrix}\right.\)

b) \(\sqrt{16x+16}-3\sqrt{x+1}+\sqrt{4x+4}=16-\sqrt{x+1}\)

\(\Rightarrow\sqrt{16\left(x+1\right)}-3\sqrt{x+1}+\sqrt{4\left(x+1\right)}+\sqrt{x+1}=16\)

\(\Rightarrow4\sqrt{x+1}-3\sqrt{x+1}+2\sqrt{x+1}+\sqrt{x+1}=16\)

\(\Rightarrow4\sqrt{x+1}=16\Rightarrow\sqrt{x+1}=4\Rightarrow x=15\)

a) \(A=\dfrac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\dfrac{2a+\sqrt{a}}{\sqrt{a}}+1\)

\(=\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{a-\sqrt{a}+1}-\dfrac{\sqrt{a}\left(2\sqrt{a}+1\right)}{\sqrt{a}}+1\)

\(=a+\sqrt{a}-2\sqrt{a}-1+1=a-\sqrt{a}\)

b) Ta có: \(a-\sqrt{a}=\left(\sqrt{a}\right)^2-2.\sqrt{a}.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2-\dfrac{1}{4}\)

\(=\left(\sqrt{a}-\dfrac{1}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\)

\(\Rightarrow A_{min}=-\dfrac{1}{4}\) khi \(a=\dfrac{1}{4}\)

18 tháng 10 2021

a) \(=6a-3+15-5a=a+12\)

b) \(=25x-12x+4+35-14x=-x+39\)

d) \(=2ab+8a^2-b^2-4ab+2ab-6a^2=2a^2-b^2\)

e) \(=x+x^2-x^3+x^4-x^5+1+x-x^2+x^3-x^4=-x^5+2x+1\)

f) \(=6y^3-3y^2+y-y+y^2-y^3-y^2+y=5y^3-3y^2+y\)

18 tháng 10 2021

a) 3( 2a -1) +5( 3-a)

   = 3. 2a -3.1 +5. 3- 5.a

   = 6a -3+ 15-5a

   =(6a -5a )+ (-3+ 15)

b) 25x - 4(3x - 1) +7(5 - 2x)

   = 25x -4.3x + 4.1 + 7.5 - 7.2

   =25x - 12x + 4 +35 - 14x

   = (25x-12x-14x)+(4+35)

   = -x=39

c) -12x3 -x1-2x-18x2

   = -36x-x-2x-36x

   = -75x

d) (2a-b)(b+4a)+2a(b-3a)

   = 2ab+2a4a-bb-b4a+2ab-2a3b

   = 2ab+8a2-b2-4ab+2ab-6a2

   =(2ab-4ab+2ab)+(8a2-6a2)-b2

   = 2a2-b2

e) (x+1)(2+x-x2+x3-x4)

   = (x+1)(2-2x)

   = x2-x2x+1.2-1.2x

   =(2x-2x)-2x2+2

   = -2x2+2

6 tháng 10 2021

\(A=\left(x+2\right)^3-\left(x-2\right)^3-12x^2=x^3+6x^2+12x+8-x^3+6x^2-12x+8-12x^2=16\)

18 tháng 2 2021

\(A=a+2\sqrt{a}-3\sqrt{a}-6-a-2\sqrt{a}-1+3\sqrt{a}\)

\(A=-7\)

Ta có: \(A=\left(\sqrt{a}+2\right)\left(\sqrt{a}-3\right)-\left(\sqrt{a}+1\right)^2+\sqrt{9a}\)

\(=a-3\sqrt{a}+2\sqrt{a}-6-a-2\sqrt{a}-1+3\sqrt{a}\)

\(=-7\)

NV
12 tháng 1 2024

\(log_{a^3}b.log_ba=\dfrac{1}{3}.log_ab.log_ba=\dfrac{1}{3}\)

\(log_{a^{10}}b^5.log_{b^3}a^9=\dfrac{1}{10}.5.log_ab.\dfrac{1}{3}.9.log_ba=\dfrac{3}{2}\)

\(log_{a^{107}}b^{101}.log_{b^{303}}a^{428}=\dfrac{1}{107}.101.log_ab.\dfrac{1}{303}.428.log_ba=\dfrac{4}{3}.log_ab.log_ba=\dfrac{4}{3}\)

a: \(log_{a^3}b\cdot log_ba=\dfrac{1}{3}\cdot log_ab\cdot log_ba=\dfrac{1}{3}\)

b: \(log_{a^{10}}b^5\cdot log_{b^3}a^9\)

\(=\dfrac{1}{10}\cdot log_ab^5\cdot\dfrac{1}{3}\cdot log_ba^9\)

\(=\dfrac{1}{30}\cdot5\cdot log_ab\cdot9\cdot log_ba=\dfrac{45}{30}=\dfrac{3}{2}\)

c: \(log_{a^{107}}b^{101}\cdot log_{b^{303}}a^{428}\)

\(=\dfrac{1}{107}\cdot log_ab^{101}\cdot\dfrac{1}{303}\cdot log_ba^{428}\)

\(=\dfrac{1}{107}\cdot101\cdot log_ab\cdot\dfrac{1}{303}\cdot428\cdot log_ba\)

\(=4\cdot\dfrac{1}{3}=\dfrac{4}{3}\)

\(A=\dfrac{x^2-2x-3-x^2+x-1+4x+4}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(=\dfrac{3x}{\left(x+1\right)\left(x^2+x+1\right)}\)

`@` `\text {Ans}`

`\downarrow`

`A= (2x - 3)^2 - (2x + 3)^2`

`= [(2x - 3) - (2x + 3)]*[(2x - 3) + (2x + 3)]`

`= (2x - 3 - 2x - 3) * (2x - 3 + 2x + 3)`

`= -6 * 4x`

`= -24x`

16 tháng 8 2023

`A=(2x-3)^2-(2x+3)^2`

`A=(2x-3-2x-3)(2x-3+2x+3)`

`A=-6.4x=-24x`