x-1/2015 + x/2014 + 2/1006= x-3/2013 + x/2012 + 1/1007
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(x-1)/2015 + x/2014 + 1/503 - (x-3)/2013 - x/2012 - 1/1007 =0
(x-2016)/2015 + (x-2016)/2014 - (x-2016)/2012 - (x-2016)/2013 = 0
(x-2016) ( 1/2015 + 1/2016 - 1/2013 - 1/2012) = 0
Mà 1/2015 + 1/2016 - 1/2013 - 1/2012 khác 0
Suy ra x -2016=0
x=2016
Chỗ nào thắc mắc nhớ hỏi mik nhe!
\(\dfrac{x+1}{2014}+\dfrac{x+2}{2013}+.....+\dfrac{x+1007}{1008}=\dfrac{x+1008}{1007}+\dfrac{x+1009}{1006}+........+\dfrac{x+2014}{1}\)\(\Leftrightarrow\left(\dfrac{x+1}{2014}+1\right)+\left(\dfrac{x+2}{2013}+1\right)+...+\left(\dfrac{x+1007}{1008}+1\right)=\left(\dfrac{x+1008}{1007}+1\right)+\left(\dfrac{x+1009}{1006}+1\right)+...+\left(\dfrac{x+2014}{1}+1\right)\)\(\Leftrightarrow\dfrac{x+2015}{2014}+\dfrac{x+2015}{2013}+...+\dfrac{x+1007}{1008}=\dfrac{x+2015}{1007}+\dfrac{x+1009}{1006}+...+\dfrac{x+2014}{1}\)\(\Leftrightarrow\dfrac{x+2015}{2014}+\dfrac{x+2015}{2013}+...+\dfrac{x+2015}{1008}-\dfrac{x+1008}{1007}-\dfrac{x+2015}{1006}-...-\dfrac{x+2015}{1}=0\)\(\Leftrightarrow\left(x+2015\right)\left(\dfrac{1}{2014}+\dfrac{1}{2013}+...+\dfrac{1}{1008}-\dfrac{1}{1007}-\dfrac{1}{1006}-...-1\right)=0\)\(\Leftrightarrow x+2015=0\left(\dfrac{1}{2014}+\dfrac{1}{2013}+...+\dfrac{1}{1008}-\dfrac{1}{1007}-\dfrac{1}{1006}-...-1>0\right)\)\(\Leftrightarrow x=-2015\)
Vậy x=-2015
2012(x + y) = 2013(y + z) = 2014 (z + x)
\(=\frac{x+y}{\frac{1}{2012}}=\frac{y+z}{\frac{1}{2013}}=\frac{z+x}{\frac{1}{2014}}\)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{x+y}{\frac{1}{2012}}=\frac{y+z}{\frac{1}{2013}}=\frac{z+x}{\frac{1}{2014}}=\frac{\left(z+x\right)-\left(y+z\right)}{\frac{1}{2014}-\frac{1}{2013}}=\frac{\left(y+z\right)-\left(x+y\right)}{\frac{1}{2013}-\frac{1}{2012}}\)
\(=\frac{x-y}{\frac{-1}{2013.2014}}=\frac{z-x}{\frac{-1}{2012.2013}}\)
= (x - y).(-2013.2014) = (z - x).(-2012.2013)
=> (x - y).(-2013.2014).\(\frac{-1}{2013.2014.1006}\) = (z - x).(-2012.2013).\(\frac{-1}{2013.2014.1006}\)
\(\Rightarrow\frac{x-y}{1006}=\frac{z-x}{1007}\left(đpcm\right)\)