Tìm \(x,\)\(y\)nguyên sao cho \(\frac{x}{2}-\frac{3}{y}=\frac{5}{4}\)
( giải giúp mình đi, đang cần gấp lắm)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
Ta có: \(\frac{1}{x}+\frac{1}{y}=\frac{1}{pq}\)
<=> \(pq\left(x+y\right)=xy\)
Đặt: \(x=ta;y=tb\) với (a; b)=1
Ta có: \(pq.\left(a+b\right)=tab\)
<=> \(pq=\frac{t}{a+b}.ab\left(1\right)\)
vì (a; b) =1 => a, b, a+b đôi một nguyên tố cùng nhau. (2)
(1); (2) => \(t⋮a+b\)
=> \(pq⋮ab\Rightarrow pq⋮a\)vì p; q là hai số nguyên tố nên \(a\in\left\{1;p;q;pq\right\}\)
TH1: a=1 => \(pq⋮b\Rightarrow b\in\left\{1;p;q;pq\right\}\)
+) Khả năng 1: b=1
(1) => \(t=2pq\)=> \(x=y=2pq\)( thỏa mãn)
+) Khả năng 2: b=p
(1) => \(pq=\frac{t}{1+p}.p\Leftrightarrow t=\left(1+p\right)q=q+pq\)
=> \(x=at=q+pq;\)
\(y=at=pq+p^2q\)(tm)
+) Khả năng 3: b=q
tương tự như trên
(1) => \(t=p\left(1+q\right)=p+pq\)
=> \(x=at=p+pq\)
\(y=bt=q\left(p+pq\right)=pq+pq^2\)
+) Khả năng 4: \(b=pq\)
(1) =>\(t=1+pq\)
=> \(x=1+pq;y=pq\left(1+pq\right)=1+p^2q^2\)
TH2: \(a=p\)
=> \(q⋮b\Rightarrow\orbr{\begin{cases}b=1\\b=q\end{cases}}\)
+) KN1: \(b=1\)
Em làm tiếp nhé! Khá là dài
2. \(x^4+4=p.y^4\)
+) Với x chẵn
Đặt x=2m ( m thuộc Z)
=> \(16m^2+4=py^4\)
=> \(py^4⋮4\Rightarrow y^4⋮4\Rightarrow y^2⋮2\Rightarrow y⋮2\)=> Đặt y=2n ;n thuộc Z
Khi đó ta có:
\(16m^2+4=p.16n^2\Leftrightarrow4m^2+1=p.4n^2⋮4\)=> \(1⋮4\)( vô lí)
=> X chẵn loại
+) Với x lẻ
pt <=> \(x^4+4=py^4\)
<=> \(\left(x^2+2x+2\right)\left(x^2-2x+2\right)=py^4\)(i)
Gọi \(\left(x^2+2x+2;x^2-2x+2\right)=d\)(1)
=> \(x^2+2x+2⋮d\)
\(x^2-2x+2⋮d\)
=.> \(\left(x^2+2x+2\right)-\left(x^2-2x+2\right)=4x⋮d\)
Vì x lẻ => d lẻ
=> \(x⋮d\)
=> \(2⋮d\Rightarrow d=1\)
Do đó: \(\left(2x^2+2x+2;2x^2-2x+2\right)=1\)(ii)
Từ (i) và (ii) có thể đặt: với \(ab=y^2\)sao cho:
\(x^2+2x+2=pa^2;\)
\(x^2-2x+2=b^2\)<=> \(\left(x-1\right)^2+1=b^2\)\(\Leftrightarrow\left(x-1-b\right)\left(x-1+b\right)=-1\)
<=> x=b=1 hoặc x=1; b=-1
Với x=1 => a^2.p=5 => p=5
\(\frac{x-2}{27}+\frac{x-3}{26}+\frac{x-4}{25}+\frac{x-5}{24}+\frac{x-44}{5}=1\)
\(\Leftrightarrow\left(\frac{x-2}{27}-1\right)+\left(\frac{x-3}{26}-1\right)+\left(\frac{x-4}{25}-1\right)+\left(\frac{x-5}{24}-1\right)\)\(+\left(\frac{x-44}{5}+3\right)=1-1\)
\(\Leftrightarrow\frac{x-29}{27}+\frac{x-29}{26}+\frac{x-29}{25}+\frac{x-29}{24}\)\(+\frac{x-29}{5}=0\)
\(\Leftrightarrow\left(x-29\right)\left(\frac{1}{27}+\frac{1}{26}+\frac{1}{25}+\frac{1}{24}+\frac{1}{5}\right)=0\)
Mà \(\frac{1}{27}+\frac{1}{26}+\frac{1}{25}+\frac{1}{24}+\frac{1}{5}\ne0\)
=> x - 29 = 0
=> x = 29.
=>3/6+4/6<x<16/4-5/4 K NHA MOI NGUOI
=>7/6<x<11/4
=>28/24<x<66/24
=>x=48/24=2
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\Rightarrow\frac{2x-2}{4}=\frac{3y-6}{6}=\frac{z-3}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{2x-2}{4}=\frac{3y-6}{6}=\frac{z-3}{4}=\frac{\left(2x-2\right)+\left(3y-6\right)-\left(z-3\right)}{4+6-4}=\frac{2x-2+3y-6-z+3}{4+6-4}\)
\(=\frac{\left(2x+3y-z\right)+\left(-2+6+3\right)}{6}=\frac{50+\left(-5\right)}{6}=\frac{45}{6}=7,5\)
\(\frac{x-1}{2}=7,5\Rightarrow x-1=15\Rightarrow x=16\)
\(\frac{y-2}{3}=7,5\Rightarrow y-2=24,5\Rightarrow y=20,5\)
\(\frac{z-3}{4}=7,5\Rightarrow z-3=30\Rightarrow z=33\)
Ta có: \(\frac{1}{x}+\frac{1}{y}=\frac{1}{8}\left(x< y\right)\)
Đặt \(x=\frac{1}{2}y\)
Ta có: x là 1 phần , y là 2 phần
Ta có sơ đồ:
x: I--------------------I Vì \(\frac{1}{x}+\frac{1}{y}=\frac{1}{8}\Rightarrow x+y=8\)
y: I--------------------I--------------------I
Áp dụng tổng số phần bằng nhau đã học ở lớp 5:
1 + 2 = 3 phần
Suy ra x = 8 : 3 x 1 = 2.6
Suy ra y = 8 - 2.6 = 5.4
Quy ra phần số: \(\frac{1}{x}=\frac{1}{2.6}=\frac{5}{13}\)( 1 : 2,6 = 5/13)
Quy ra phân số: \(\frac{1}{y}=\frac{1}{5.4}=\frac{5}{27}\)( 1 : 5,4 = 5/27)
\(\Rightarrow\orbr{\begin{cases}x=13\\y=27\end{cases}}\) (vì x và y đều là mẫu của phân số mà ta đã quy ra)
đúng rồi 100%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
áp dụngBĐT cô si ta có
\(\frac{x^2}{y+1}\)+\(\frac{y+1}{4}\)\(\ge\)x
\(\frac{y^2}{z+1}\)+\(\frac{z+1}{4}\)\(\ge\)y
\(\frac{z^2}{x+1}\)+\(\frac{x+1}{4}\)\(\ge\)z
khi đó VT\(\ge\)x+y+z-\(\frac{x+y+z+3}{4}\)=\(\frac{3\left(x+y+z\right)-3}{4}\)
áp dụng BĐT cô si
x+y+z\(\ge\)\(3\sqrt[3]{xyz}\)=3
do đó VT\(\ge\)\(\frac{6}{4}\)=\(\frac{3}{2}\) (đpcm)
Ta có:
\(\frac{x}{2}-\frac{3}{y}=\frac{5}{4}\)
hay \(\frac{2x}{4}-\frac{3}{y}=\frac{5}{4}\)
Suy ra \(\frac{3}{y}=\frac{2x-5}{4}\)
\(\Rightarrow3\cdot4=\left(2x-5\right)y\)
hay \(\left(2x-5\right)y=12\)
Đến đây bạn tự lập bảng giá trị nhé!