Tìm số chính phương có 4 chữ số sao cho 2 chữ số cuối chia hết cho 2 chữ số đầu
Giúp nhanh cho mik nha mmik cần gấp
Mik sẽ tick cho bạn thật nhiều
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xin lỗi nha, mik mới lớp 5 nên chỉ biết giải 2 bài còn lại. Bài 2 vì chữ số hàng chục gấp 3 lần chữ số hàng đơn vị mà số đó lại chia hết cho 2 => số đó là 62 (vì số 2 ở hàng đơn vị là số duy nhất có thể nhân với 3 mà ra số cí một chữ số). Bài 3 thì:
Hàng nghìn: 4 lần chọn
Hang trăm: 3 lần chọn
Hàng chục: 2 lần chọn
Hàng đơn vị: 1 lần chọn
=> Số các số hạng có the viết được là: 4 x 3 x 2 = 24
Kết bạn với tôi đi thtl_nguyentranhuyenanh nha
Câu trả lời tôi ko biết bởi mới học lớp 5
Gọi số phải tìm là \(\overline{abcd}=n^2\)
nên số viết theo thứ tự ngược lại là \(\overline{dcba}=m^2\) với \(m,n\inℕ\)và m>n
Do \(1000\le\overline{abcd},\overline{dcba}\le9999\) nên \(1000\le m^2,n^2\le9999\)
Mà \(m^2,n^2\)là số chính phương và \(m,n\inℕ\)
\(\Rightarrow1024\le m^2,n^2\le9801\)
\(\Rightarrow32\le m,n\le99\)
Do \(\overline{dcba}⋮\overline{abcd}\Rightarrow m^2⋮n^2\Rightarrow m⋮n\)
Đặt \(m=kn\forall k\inℕ^∗,k\ge2\Rightarrow\overline{dcba}=k^2.\overline{abcd}\)
Ta có: \(m=kn\le99,n\ge32\)
=> 32.k.n ≤ 99n => k ≤ 99/32 => k≤ 3 \(\Rightarrow32kn\le99n\Rightarrow k\le\frac{99}{32}\Rightarrow k\le3\)
Như vậy: \(k\in\left\{2;3\right\}\)
+Nếu k = 2 thì: dcba = 4.abcd
Theo a € {1,4,6,9}: nếu a=4 thì: dcb4 = 4bcd . 4 > 9999 => a chỉ có thể là 1.
Khi đó: dcb1 = 4. 1bcd ≤ 4.1999 = 7996 => d ≤ 7. Kết hợp với đc: d= 4 hoặc d =6
Với d=4: <=> 390b+15=60c <=> 26b+1=4c (vô lý vì vế trái chẵn còn vế phải lẻ)
Với d = 6: <=> 390b+23 = 60c+2000 (cũng vô lý)
+Như vậy: k =3. Khi đó: dcba = 9.abcd
a chỉ có thể là 1 và d = 9. Khi đó: <=> 9cb1 = 9.1bc9
<=> 10c = 800b+80 <=> c = 80b+8
Điều này chỉ có thể xảy ra <=> b=0 và c=8
KL: số phải tìm là: 1089
Vì số cần tìm chia hết cho 2 nên số tận cùng phải là số chẵn.
Như vậy số tự nhiên có hai chữ số, các chữ số giống nhau và chia hết cho 2 là 22, 44, 66, 88
Ta có: 22 chia cho 5 dư 2
44 chia cho 5 dư 4
66 chia cho 5 dư 1
88 chia cho 5 dư 3
Vậy số cần tìm là 44
Gọi số cần tìm là \(\overline {abcd}\)
Theo bài ra ta có \(\overline {cd}\) \(\vdots \) \(\overline {ab}\) \(\to\) \(\overline {cd}\) \(=\) \(\overline {ab}\) . k (k \(\in\) N)
Có \(\overline {abcd}\) \(=\) \((k+100)\overline {ab}\)
mà \(10 \leq \overline {ab} < 100\) \(\to\) k+100 ko là SNT
\(0 \leq k+100 < 9\)
mà k+100 \(\to\) k \(\neq \) 1,3,7,9
\(\to\) k \(\in \) {2;4;5;6;8}
Rồi xét k là ra nhé
Chúc bạn học tốt ^^
Gọi số đó là abcd=m2 (31<m<100) , ta có :
cd=ab.k=>ab.10k=m2 ( 0<k<10 )
Nếu 10k khi phân tích ra thừa số nguyên tố chỉ chứa các thừa số nguyên tố. Mà m2 chia hết cho 10k => m sẽ chia hết cho số 10k.
Mà 0<m<100 nên m không thể chia hết được cho 10k ( loại ).
Khi đó : m sẽ là một trong các số sau 104 ;108.
Nếu 10k=108=>m2 chia hết cho 27.
=>m2 chia hết cho 81.
=>ab chia hết cho 3.
Vì cd=ab.8=>10< ab < 13.Mà ab chia hết cho 3 nên ab = 12.=>cd=96 (t/m).
Nếu 10k = 104 =>m2 chia hết cho 13.
=>m2 chai hết cho 132.
=>ab chai hêt cho 13 mà 0<ab<25.=>ab=13=cd=52 .(loại vì số chính phương không có tận cùng là 2)
Vậy số cần tìm là 1296.
ây răng lại ab.10k=m2