Tìm x, y biết \(2x^2+y^2-2xy-2y+2=0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(2x^2+y^2+2xy+10x+25=0\)
\(\Leftrightarrow x^2+x^2+y^2+2xy+10x+25=0\)
\(\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(x^2+10x+25\right)=0\)
\(\Leftrightarrow\left(x+y\right)^2+\left(x+5\right)^2=0\)
Vì \(\hept{\begin{cases}\left(x+y\right)^2\ge0\forall x\\\left(x+5\right)^2\ge0\forall x\end{cases}}\)
\(\Rightarrow\left(x+y\right)^2+\left(x+5\right)^2\ge0\forall x\)
Vậy đẳng thức xảy ra\(\Leftrightarrow\hept{\begin{cases}x+y=0\\x+5=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-5\\y=5\end{cases}}\)
b)\(x^2+3y^2+2xy-2y+1=0\)
\(\Leftrightarrow x^2+y^2+2y^2+2xy-2y+\frac{1}{2}+\frac{1}{2}=0\)
\(\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(2y^2-2y+\frac{1}{2}\right)+\frac{1}{2}=0\)
\(\Leftrightarrow\left(x+y\right)^2+\left(\sqrt{2}y-\frac{1}{\sqrt{2}}\right)^2+\frac{1}{2}=0\)
Vì \(\left(x+y\right)^2+\left(\sqrt{2}y-\frac{1}{\sqrt{2}}\right)^2\ge0\)
nên \(\left(x+y\right)^2+\left(\sqrt{2}y-\frac{1}{\sqrt{2}}\right)^2+\frac{1}{2}>0\)
Mà\(\left(x+y\right)^2+\left(\sqrt{2}y-\frac{1}{\sqrt{2}}\right)^2+\frac{1}{2}=0\)
nên pt vô nghiệm
a) x2+y2-4x+4y+8=0
⇔ (x-2)2+(y+2)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-2\end{matrix}\right.\)
b)5x2-4xy+y2=0
⇔ x2+(2x-y)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\2x-y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
c)x2+2y2+z2-2xy-2y-4z+5=0
⇔ (x-y)2+(y-1)2+(z-2)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\y-1=0\\z-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y=1\\z=2\end{matrix}\right.\)
b: Ta có: \(5x^2-4xy+y^2=0\)
\(\Leftrightarrow x^2-\dfrac{4}{5}xy+y^2=0\)
\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{2}{5}y+\dfrac{4}{25}y^2+\dfrac{21}{25}y^2=0\)
\(\Leftrightarrow\left(x-\dfrac{2}{5}y\right)^2+\dfrac{21}{25}y^2=0\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
\(x^2+2y^2+2xy-2x+2=0.\)
\(\Leftrightarrow\left(x^2+y^2+1+2xy-2x-2y\right)+\left(y^2+2y+1\right)=0\)
\(\Leftrightarrow\left(x+y-1\right)^2+\left(y+1\right)^2=0\)
Mà \(\left(x+y-1\right)^2\ge0,\left(y+1\right)^2\ge0\)
Suy ra \(\hept{\begin{cases}\left(x+y-1\right)^2=0\\\left(y+1\right)^2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x+y=1\\y=-1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2\\y=-1\end{cases}.}\)
\(2x^2-8x+y^2+2y+9=0\)
\(\Leftrightarrow\left(2x^2-8x+8\right)+\left(y^2+2y+1\right)=0\)
\(\Leftrightarrow2\left(x^2-4x+4\right)+\left(y+1\right)^2=0\)
\(\Leftrightarrow2\left(x-2\right)^2+\left(y+1\right)^2=0\)
Mà \(2\left(x-2\right)^2\ge0,\left(y+1\right)^2\ge0\)
Suy ra \(\hept{\begin{cases}2\left(x-2\right)^2=0\\\left(y+1\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=-1\end{cases}}}\)
Mình làm câu đầu tượng trưng thui nhé, 2 câu sau tương tự vậy !!!!!!
a) pt <=> \(x^2-2xy+2y^2-2x-2y+5=0\)
<=> \(\left(x-y-1\right)^2+y^2-4y+4=0\)
<=> \(\left(x-y-1\right)^2+\left(y-2\right)^2=0\) (1)
TA LUÔN CÓ: \(\left(x-y-1\right)^2;\left(y-2\right)^2\ge0\forall x;y\)
=> \(\left(x-y-1\right)^2+\left(y-2\right)^2\ge0\) (2)
TỪ (1) VÀ (2) => DẤU "=" SẼ PHẢI XẢY RA <=> \(\hept{\begin{cases}\left(x-y-1\right)^2=0\\\left(y-2\right)^2=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=3\\y=2\end{cases}}\)
VẬY \(\left(x;y\right)=\left(3;2\right)\)
2x2+y2−2xy−2y+2=0⇔4x2+2y2−4xy−4y+4=0⇔4x2−4xy+y2+y2−4y+4=0⇔(2x−y)2+(y−2)2=0do:(2x−y)2≥0(y−2)2≥0=>(2x−y)2+(y−2)2≥02x2+y2−2xy−2y+2=0⇔4x2+2y2−4xy−4y+4=0⇔4x2−4xy+y2+y2−4y+4=0⇔(2x−y)2+(y−2)2=0do:(2x−y)2≥0(y−2)2≥0=>(2x−y)2+(y−2)2≥0
Dấu = xảy ra<=>{2x−y=0y−2=0⇔{y=22x−2=0⇔{y=2x=1{2x−y=0y−2=0⇔{y=22x−2=0⇔{y=2x=1
Vậy (x;y)=(1;2)