cho tam giác ABC, MN song song với BC(M,N lần lượt thuộc AB,AC)
aC/m \(\frac{AM}{AB}=\frac{AN}{AC}\)
b,\(\frac{AM}{MB}=\frac{AN}{NC}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho tam giác ABC vg tại AAco đg ttrung tuyến AM.Gọi D là trung điểm củ AB E là đ dối xứng vs M qua D.
a)c/m AEBM là hinhhình thoi
b)gọi I là ttung đ của AM.c/m EIC thẳng hàng
c)tam giác ABC ccó themthêm điều kiện gì thì AEBM là hình
Cụ thể như sau:
Vẽ ��,��MH,NK vuông góc ��BC thì thấy ngay �(���)=�(���)S(BMC)=S(BNC) (�S là diện tích hình)
Suy ra �(���)=�(���)S(AMC)=S(ANB) hay �(���)�(���)=�(���)�(���)S(ABC)S(AMC)=S(ACB)S(ANB), nghĩa là có câu a.
Mà có câu a thì có câu b
a) Kéo dài MP, NP lần lượt cắt BC tại E, D.
Xét tam giác ABC có ME // AC \(\Rightarrow\)\(\frac{AM}{AB}\)= \(\frac{CE}{BC}\)(1)
Xét tam giác ABC có ND // AB \(\Rightarrow\)\(\frac{AN}{AC}\)= \(\frac{BD}{BC}\)(2)
Xét tam giác ABQ có PD//AB \(\Rightarrow\frac{PQ}{AQ}=\frac{DQ}{BQ}\)
Xét tam giấc ACQ có PE//AC\(\Rightarrow\frac{PQ}{AQ}=\frac{QE}{QC}\)
\(\Rightarrow\frac{PQ}{AQ}=\frac{DQ}{BQ}=\frac{QE}{QC}=\frac{DQ+QE}{BQ+QC}=\frac{DE}{BC}\)(3)
Từ (1), (2), (3) suy ra \(\frac{AM}{AB}+\frac{AN}{AC}+\frac{PQ}{AQ}=\frac{CE}{BC}+\frac{DB}{BC}+\frac{DE}{BC}=1\)(đpcm)
a) Vì \(AM = MB \Rightarrow M\) là trung điểm của \(AB\) (do \(M\) thuộc \(AB\))
\( \Rightarrow AM = \frac{1}{2}AB \Leftrightarrow \frac{{AM}}{{AB}} = \frac{1}{2}\);
Vì \(AN = NC \Rightarrow N\) là trung điểm của \(AC\) (do \(N\) thuộc \(AC\))
\( \Rightarrow AN = \frac{1}{2}AC \Leftrightarrow \frac{{AN}}{{AC}} = \frac{1}{2}\).
b) Vì \(\frac{{AM}}{{AB}} = \frac{1}{2};\frac{{AN}}{{AC}} = \frac{1}{2} \Rightarrow \frac{{AM}}{{AB}} = \frac{{AN}}{{AC}}\).
Xét tam giác \(ABC\) có \(\frac{{AM}}{{AB}} = \frac{{AN}}{{AC}}\) nên áp dụng định lí Thales đảo ta được \(MN//BC\).
c) Xét tam giác \(ABC\) có \(MN//BC\) nên áp dụng hệ quả định lí Thales ta được \(\frac{{AM}}{{AB}} = \frac{{AN}}{{AC}} = \frac{{MN}}{{BC}}\)
Mà \(\frac{{AM}}{{AB}} = \frac{1}{2} \Rightarrow \frac{{AM}}{{AB}} = \frac{{AN}}{{AC}} = \frac{{MN}}{{BC}} = \frac{1}{2}\).
Vậy \(\frac{{MN}}{{BC}} = \frac{1}{2}\) (điều phải chứng minh).
hình vẽ
vì \(\frac{AM}{MB}\)= \(\frac{AN}{NC}\) nên MN // BC ( định lý ta- let đảo)
MN//BC
áp dụng hệ quả của định lý ta-let ta có
\(\frac{AM}{MB}\)= \(\frac{MK}{MI}\)(1)
\(\frac{AN }{NC}\)= \(\frac{KN}{IC}\) (2)
từ (1) và (2)
=> \(\frac{MK}{MI}\)= \(\frac{KN}{IC}\)
mà Mi = IC
nên MK = KN => K là trung điểm của MN
Xét tg ABC có \(\frac{AM}{MB}=\frac{AN}{NC}\) => MN // BC ( Áp dụng đl TL đảo)
Xét \(\Delta ABC\) có :
MA = MB ; NA = NC
=> MN là đường trung bình của \(\Delta ABC\)
=> MN // BC và MN = \(\frac{1}{2}BC\)
Vẽ P sao cho N là trung điểm của \(MP.\)
Xét 2 \(\Delta\) \(AMN\) và \(CPN\) có:
\(AN=CN\left(gt\right)\)
\(\widehat{ANM}=\widehat{CNP}\) (vì 2 góc đối đỉnh)
\(MN=NP\left(=\frac{1}{2}MP\right)\)
=> \(\Delta AMN=\Delta CPN\left(c-g-c\right)\)
=> \(\widehat{AMN}=\widehat{CPN}\) (2 góc tương ứng)
Mà 2 góc này nằm ở vị trí so le trong
=> \(AM\) // \(CP\) hay \(BM\) // \(CP.\)
=> \(\left\{{}\begin{matrix}\widehat{BMC}=\widehat{PCM}\\\widehat{PCM}=\widehat{BMC}\end{matrix}\right.\) (vì 2 góc so le trong)
Xét 2 \(\Delta\) \(BMC\) và \(PCM\) có:
\(\widehat{BMC}=\widehat{PCM}\left(cmt\right)\)
Cạnh MC chung
\(\widehat{PCM}=\widehat{BMC}\left(cmt\right)\)
=> \(\Delta BMC=\Delta PMC\left(g-c-g\right)\)
=> \(BC=MP\) (2 cạnh tương ứng)
=> \(2.MN=BC\)
=> \(MN=\frac{1}{2}BC\left(đpcm1\right).\)
Vì \(\widehat{BMC}=\widehat{PCM}\left(cmt\right)\)
Mà 2 góc này nằm ở vị trí so le trong
=> \(MP\) // \(BC.\)
hay \(MN\) // \(BC\left(đpcm2\right).\)
Chúc bạn học tốt!
Tham khảo:
Câu hỏi của Trịnh Tố Uyên - Toán lớp 7 | Học trực tuyến
Chứng minh định lí Thales thì dùng diện tích nha bạn.
Cụ thể như sau:
Vẽ \(MH,NK\) vuông góc \(BC\) thì thấy ngay \(S\left(BMC\right)=S\left(BNC\right)\) (\(S\) là diện tích hình)
Suy ra \(S\left(AMC\right)=S\left(ANB\right)\) hay \(\frac{S\left(AMC\right)}{S\left(ABC\right)}=\frac{S\left(ANB\right)}{S\left(ACB\right)}\), nghĩa là có câu a.
Mà có câu a thì có câu b