K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 9 2022

          Giải:

đường cao là 4; trung tuyến là 5 

trong tam giác vuông đường trung tuyến ứng với cạnh huyền bằng 1/2 cạnh huyền

vậy cạnh huyền của tam giác là:  5 x 2 = 10

gọi hai cạnh tam giác vuông là a,b theo pytago ta có:

a2 + b2 =  c2 = 102 = 100 (1)

diện tích tam giác vuông là: 

a.b .1/2 = 4 . 10 .1/2 = 20

⇔a.b  =  20.2 = 40  (2)

kết hợp (1) và (2) ta có :

 \(\left\{{}\begin{matrix}a^2+b^2=100\\a.b=40\end{matrix}\right.\)  ⇔ \(\left\{{}\begin{matrix}a^2+b^2=100(3)\\a^2.b^2=1600(4)\end{matrix}\right.\)  

từ (3) ta có: a2  = 100 - b2

thay a2 = 100 - b2 vào (4) ta có: b2. ( 100 - b2) = 1600

⇔ -b4  + 100b2 - 1600 = 0

\(\Delta\) = 10000 - 6400 = 3600

b2 = (-100 + \(\sqrt{3600}\)) : (-2) = 20 ⇔ b = \(\sqrt{20}\); a = \(\sqrt{100-20^{ }}\) = \(\sqrt{80}\)

b2 = ( -100 - \(\sqrt{3600}\) ) : (-2) = 80 ⇔ b = \(\sqrt{80}\) ; a = \(\sqrt{100-80}\) = \(\sqrt{20}\)

 vậy các cạnh của tam giác vuông là: \(\sqrt{20}\)\(\sqrt{80}\); 10

 

 

NM
11 tháng 8 2021

A B C M H

ta có \(BC=2AM=2\times5=10cm\)

ta có \(MH=\sqrt{AM^2-AH^2}=\sqrt{5^2-4^2}=3cm\)

nên \(HB=MB-MH=5-4=1cm\) mà ta có \(AB^2=BH.BC=1.10\Rightarrow AB=\sqrt{10}\Rightarrow AC=\sqrt{BC^2-AB^2}=3\sqrt{10}\left(cm\right)\)

k mk nha

đúng

Bài giải:

Gọi a là độ dài cạnh huyền của tam giác vuông.

Theo định lí Pitago ta có:

a2 = 7+ 24= 49 + 576 = 625

Nên a = 25cm

Trung tuyến ứng với cạnh huyền có độ dài bằng nửa độ dài cạnh huyền. Nên trung tuyến ứng với cạnh huyền có độ dài là 12,5cm.

độ dài cạnh huyền là:

5x2=10(cm)

độ dài cạnh góc vuông thứ hai là:

\(\sqrt{10^2-5^2}=5\sqrt{3}\left(cm\right)\)

độ dài đường cao là:

\(5\cdot5\sqrt{3}:10=\dfrac{5\sqrt{3}}{2}\left(cm\right)\)

10 tháng 1 2022

5cm

 

9 tháng 9 2016

Bài 1:

3 4 x y z

Áp dụng đl pytago ta có:

\(\left(y+z\right)^2=3^2+4^2=9+16=25\)

=> y + z = 5

Áp dụng hệ thức giữa cạnh góc vuông và hình chiếu của nó trên cạnh huyền ta có:

\(3^2=y\left(y+z\right)=5y\)

=>\(y=\frac{3^2}{5}=1,8\)

Có: y + z =5

=>z=5-y=5-1,8=3,2

Áp dụng hên thức liên quan tới đường cao:

\(x^2=y\cdot z=1,8\cdot3,2=\frac{144}{25}\)

=>\(x=\frac{12}{5}\)

2 tháng 9 2019

Bài 2:

B A C H 1cm 2cm x y

Ta có: △ABC vuông tại A và có đg cao AH

AB2 = BH.BC ( hệ thức lượng )

⇒ x2 = 1 . 3

⇒ x = \(\sqrt{1.3}=\sqrt{3}cm\)

AC2 = CH.BC

⇒ y2 = 2 . 3

⇒ y = \(\sqrt{6}\) cm

12 tháng 1 2016

\(Ad\) \(Py-ta-go\) \(ta\) \(có:\)

\(5^2+12^2=a^2\)\(a-c.huyền\)

\(\Rightarrow a^2=25+144=169\)

\(\Rightarrow a=13\)

\(\Delta vuông\)

\(\Rightarrow t.tuyến=\frac{1}{2}c.huyền\)

\(\Rightarrow t.tuyến=\frac{c.huyền}{2}=\frac{13}{2}=6,5cm\)

22 tháng 7 2021

A B C H M

( hình hơi xấu :V )

Giả sử tam giác ABC vuông tại A( AB < AC)   có AM là trung tuyến, AH là đường cao

Vì đường cao và đường trung tuyến ứng với cạnh huyền của tam giác tỷ lệ với 12 :13 , do đó đặt AH = 12x,  AM =13 x

Suy ra BM = CM = 13x

Áp dụng định lý Pytago cho \(\Delta AHM\)có:

HM2= AM2 -  AH2 =  (13x)2 - (12x)2 = (25 x)2 

=> HM = 5x 

Do đó HC =  5x + 13x = 18x 

Dễ thấy \(\Delta ABC\)Đồng dạng  \(\Delta HAC\)(g.g)

=> \(\frac{AB}{AC}\)\(\frac{HA}{HC}\)\(\frac{12x}{18x}\)\(\frac{2}{3}\)

=> kl

4 tháng 3 2022

e tham khảo:

undefined