tìm các cạnh của tam giác vuông biết đường cao và đường trung tuyến ứng với cạnh huyền là 4 và 5
giúp mình với mình cần gấp!!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có \(BC=2AM=2\times5=10cm\)
ta có \(MH=\sqrt{AM^2-AH^2}=\sqrt{5^2-4^2}=3cm\)
nên \(HB=MB-MH=5-4=1cm\) mà ta có \(AB^2=BH.BC=1.10\Rightarrow AB=\sqrt{10}\Rightarrow AC=\sqrt{BC^2-AB^2}=3\sqrt{10}\left(cm\right)\)
k mk nha
đúng
Bài giải:
Gọi a là độ dài cạnh huyền của tam giác vuông.
Theo định lí Pitago ta có:
a2 = 72 + 242 = 49 + 576 = 625
Nên a = 25cm
Trung tuyến ứng với cạnh huyền có độ dài bằng nửa độ dài cạnh huyền. Nên trung tuyến ứng với cạnh huyền có độ dài là 12,5cm.
độ dài cạnh huyền là:
5x2=10(cm)
độ dài cạnh góc vuông thứ hai là:
\(\sqrt{10^2-5^2}=5\sqrt{3}\left(cm\right)\)
độ dài đường cao là:
\(5\cdot5\sqrt{3}:10=\dfrac{5\sqrt{3}}{2}\left(cm\right)\)
Bài 1:
Áp dụng đl pytago ta có:
\(\left(y+z\right)^2=3^2+4^2=9+16=25\)
=> y + z = 5
Áp dụng hệ thức giữa cạnh góc vuông và hình chiếu của nó trên cạnh huyền ta có:
\(3^2=y\left(y+z\right)=5y\)
=>\(y=\frac{3^2}{5}=1,8\)
Có: y + z =5
=>z=5-y=5-1,8=3,2
Áp dụng hên thức liên quan tới đường cao:
\(x^2=y\cdot z=1,8\cdot3,2=\frac{144}{25}\)
=>\(x=\frac{12}{5}\)
\(Ad\) \(Py-ta-go\) \(ta\) \(có:\)
\(5^2+12^2=a^2\)\(a-c.huyền\)
\(\Rightarrow a^2=25+144=169\)
\(\Rightarrow a=13\)
\(\Delta vuông\)
\(\Rightarrow t.tuyến=\frac{1}{2}c.huyền\)
\(\Rightarrow t.tuyến=\frac{c.huyền}{2}=\frac{13}{2}=6,5cm\)
( hình hơi xấu :V )
Giả sử tam giác ABC vuông tại A( AB < AC) có AM là trung tuyến, AH là đường cao
Vì đường cao và đường trung tuyến ứng với cạnh huyền của tam giác tỷ lệ với 12 :13 , do đó đặt AH = 12x, AM =13 x
Suy ra BM = CM = 13x
Áp dụng định lý Pytago cho \(\Delta AHM\)có:
HM2= AM2 - AH2 = (13x)2 - (12x)2 = (25 x)2
=> HM = 5x
Do đó HC = 5x + 13x = 18x
Dễ thấy \(\Delta ABC\)Đồng dạng \(\Delta HAC\)(g.g)
=> \(\frac{AB}{AC}\)= \(\frac{HA}{HC}\)= \(\frac{12x}{18x}\)= \(\frac{2}{3}\)
=> kl
Giải:
đường cao là 4; trung tuyến là 5
trong tam giác vuông đường trung tuyến ứng với cạnh huyền bằng 1/2 cạnh huyền
vậy cạnh huyền của tam giác là: 5 x 2 = 10
gọi hai cạnh tam giác vuông là a,b theo pytago ta có:
a2 + b2 = c2 = 102 = 100 (1)
diện tích tam giác vuông là:
a.b .1/2 = 4 . 10 .1/2 = 20
⇔a.b = 20.2 = 40 (2)
kết hợp (1) và (2) ta có :
\(\left\{{}\begin{matrix}a^2+b^2=100\\a.b=40\end{matrix}\right.\) ⇔ \(\left\{{}\begin{matrix}a^2+b^2=100(3)\\a^2.b^2=1600(4)\end{matrix}\right.\)
từ (3) ta có: a2 = 100 - b2
thay a2 = 100 - b2 vào (4) ta có: b2. ( 100 - b2) = 1600
⇔ -b4 + 100b2 - 1600 = 0
\(\Delta\) = 10000 - 6400 = 3600
b2 = (-100 + \(\sqrt{3600}\)) : (-2) = 20 ⇔ b = \(\sqrt{20}\); a = \(\sqrt{100-20^{ }}\) = \(\sqrt{80}\)
b2 = ( -100 - \(\sqrt{3600}\) ) : (-2) = 80 ⇔ b = \(\sqrt{80}\) ; a = \(\sqrt{100-80}\) = \(\sqrt{20}\)
vậy các cạnh của tam giác vuông là: \(\sqrt{20}\); \(\sqrt{80}\); 10