K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 9 2022

\(a,b\) mình nghĩ chắc lần lượt là BC, AC.

Hạ đường cao CH của tam giác ABC. Khi đó áp dụng hệ thức giữa cạnh và góc cho các tam giác vuông tại H là HAC, HBC, ta có \(AH=AC.cosA=b.cosA\) và \(BH=BC.cosB=a.cosB\). Mặt khác, từ giả thiết ta có \(b.cosA=a.cosB\), do đó \(AH=BH\) hay H là trung điểm AB hay CH là trung tuyến hạ từ C của tam giác ABC. 

Nhận thấy trong tam giác ABC có CH vừa là đường cao, vừa là trung tuyến nên tam giác ABC cân tại C. (đpcm)

22 tháng 9 2022

Giải hộ mik vs mn ơi

NV
13 tháng 12 2020

\(\Leftrightarrow sinA=2sinB.cosC\)

\(\Leftrightarrow\dfrac{a}{2R}=2.\dfrac{b}{2R}.\dfrac{a^2+b^2-c^2}{2ab}\)

\(\Leftrightarrow a^2=a^2+b^2-c^2\)

\(\Leftrightarrow b^2=c^2\Leftrightarrow b=c\)

Vậy tam giác ABC cân tại A

15 tháng 10 2019

Ta có:

Vì:

Suy ra, tam giác ABC vuông tại A

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

Ta có: \(A+B+C=180^o\)

a)

\(\sin (B + C) = \sin \left( {{{180}^o} - A} \right) = \sin A\)

Vậy \(\sin A = \sin \;(B + C)\)

b)

\(\cos (B + C) = \cos \left( {{{180}^o} - A} \right) =  - \cos A\)

Vậy \(\cos A =  - \cos \;(B + C)\)

2 tháng 7 2018

A, B , C là ba góc của ΔABC nên ta có: A + B + C = 180º

a) sin A = sin (180º – A) = sin (B + C)

b) cos A = – cos (180º – A) = –cos (B + C)

7 tháng 6 2021

a) \(1+tan^2B=1+\dfrac{AC^2}{AB^2}=\dfrac{AB^2+AC^2}{AB^2}=\dfrac{BC^2}{AB^2}=\dfrac{1}{\left(\dfrac{AB}{BC}\right)^2}=\dfrac{1}{cos^2B}\)

b) Ta có: \(a.sinB.cosB=BC.\dfrac{AC}{BC}.\dfrac{AB}{BC}=\dfrac{AC.AB}{BC}=\dfrac{AH.BC}{BC}=AH\)

\(AB^2=BH.BC\Rightarrow BH=\dfrac{AB^2}{BC}=BC.\left(\dfrac{AB}{BC}\right)^2=BC.cos^2B\)

Tương tự \(\Rightarrow CH=BC.sin^2B\)

25 tháng 12 2015

a) Do A + B + C = 180 độ nên góc A bù với góc B + C => sin(B + C) = sinA (sin hai góc bù bằng nhau)

 (A + B)/2 + C/2 = 90 độ => hai góc (A + B)/2 và C/2 là hai góc phụ nhau => cos (A + B)/2 = sin(C/2) (Chắc đề bài bạn cho nhầm thành sinC)

b) Bạn xem lại đề nhé

c) \(sin^6a+cos^6a+3sin^2a.cos^2a=\left(sin^2a\right)^3+\left(cos^2a\right)^3+3.sin^2a.cos^2a\)

   = \(\left(sin^2a+cos^2a\right)\left(sin^4a+cos^4a-sin^2a.cos^2a\right)+3sin^2a.cos^2a\)

\(sin^4a+cos^4a+2sin^2a.cos^2a\)

\(\left(sin^2a+cos^2a\right)^2=1\)

QT
Quoc Tran Anh Le
Giáo viên
21 tháng 9 2023

Ta có: \(A + B + C = {180^0}\)(tổng 3 góc trong một tam giác)

\(\begin{array}{l} \Rightarrow A = {180^0} - \left( {B + C} \right)\\ \Leftrightarrow \sin A = \sin \left( {{{180}^0} - \left( {B + C} \right)} \right)\\ \Leftrightarrow \sin A = \sin \left( {B + C} \right) = \sin B.\cos C + \sin C.\cos B\end{array}\)