Bài 45 (trang 27 SGK Toán 9 Tập 1)
So sánh
a) $3 \sqrt{3}$ và $\sqrt{12}$ ; b) $7$ và $3 \sqrt{5}$ ;
c) $\dfrac{1}{3} \sqrt{51}$ và $\dfrac{1}{5} \sqrt{150}$ ; d) $\dfrac{1}{2} \sqrt{6}$ và $6 \sqrt{\dfrac{1}{2}}$.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có:
4>3⇔√4>√3⇔2>√3⇔2.2>2.√3⇔4>2√34>3⇔4>3⇔2>3⇔2.2>2.3⇔4>23
Cách khác:
Ta có:
⎧⎨⎩42=16(2√3)2=22.(√3)2=4.3=12{42=16(23)2=22.(3)2=4.3=12
Vì 16>12⇔√16>√1216>12⇔16>12
Hay 4>2√34>23.
b) Vì 5>4⇔√5>√45>4⇔5>4
⇔√5>2⇔5>2
⇔−√5<−2⇔−5<−2 (Nhân cả hai vế bất phương trình trên với −1−1)
Vậy −√5<−2−5<−2.
a, Ta có : \(4=\sqrt{16}\); \(2\sqrt{3}=\sqrt{4.3}=\sqrt{12}\)
Do 12 < 16 hay \(2\sqrt{3}< 4\)
b, Ta có : \(-2=-\sqrt{4}\)
Do \(4< 5\Rightarrow\sqrt{4}< \sqrt{5}\Rightarrow-\sqrt{4}>-\sqrt{5}\)
Vậy \(-2>-\sqrt{5}\)
a) `3\sqrt3=\sqrt(3^2 .3)=\sqrt27`
\sqrt12=\sqrt12`
`=> \sqrt27 > \sqrt12`
`=> 3\sqrt3 > \sqrt12`
b) `7=\sqrt(7^2)=\sqrt49`
`3\sqrt5=\sqrt(3^2 .5)=\sqrt45`
`=> \sqrt49>\sqrt45`
`=>7>3\sqrt5`
c) `1/3 \sqrt51 = \sqrt( (1/3)^2 .51) =\sqrt(17/3)`
`1/5 \sqrt150 =\sqrt( (1/5)^2 .150)=\sqrt6`
`=> \sqrt(17/3) < \sqrt6`
`=> 1/3 \sqrt51 < 1/5 \sqrt150`
d) `1/2 \sqrt6 = \sqrt(3/2)`
`6\sqrt(1/2) =\sqrt(18)`
`=> \sqrt(3/2) < \sqrt18`
`=> 1/2 \sqrt6 < 6\sqrt(1/2)`.
Trả lời:
a) ta có: 2 = √4
Vì 4 > 3 nên √4 > √3
Vậy 2 > √3
b) Ta có: 6 = √36
Vì 36 < 41 nên √36 < √41
Vậy 6 < √41
c) ta có 7 = √49
Vì 49 > 47 nên √49 > √47
Vậy 7 > √47
a) Ta có: 5=3√53=3√1255=533=1253
Vì 125>123⇔3√125>3√123125>123⇔1253>1233
⇔5>3√123⇔5>1233
Vậy 5>3√1235>1233.
b, Ta có :
+)53√6=3√53.6=3√125.6=3√750+)63√5=3√63.5=3√216.5=3√1080+)563=53.63=125.63=7503+)653=63.53=216.53=10803
Vì 750<1080⇔3√750<3√1080750<1080⇔7503<10803
⇔53√6<63√5⇔563<653.
Vậy 53√6<63√5563<653.
a) Ta có:
+)√25+9=√34+)25+9=34.
+)√25+√9=√52+√32=5+3+)25+9=52+32=5+3
=8=√82=√64=8=82=64.
Vì 34<6434<64 nên √34<√6434<64
Vậy √25+9<√25+√925+9<25+9
b) Với a>0,b>0a>0,b>0, ta có
+)(√a+b)2=a+b+)(a+b)2=a+b.
+)(√a+√b)2=(√a)2+2√a.√b+(√b)2+)(a+b)2=(a)2+2a.b+(b)2
=a+2√ab+b=a+2ab+b
=(a+b)+2√ab=(a+b)+2ab.
Vì a>0, b>0a>0, b>0 nên √ab>0⇔2√ab>0ab>0⇔2ab>0
⇔(a+b)+2√ab>a+b⇔(a+b)+2ab>a+b
⇔(√a+√b)2>(√a+b)2⇔(a+b)2>(a+b)2
⇔√a+√b>√a+b⇔a+b>a+b (đpcm)
a, Ta có : \(\sqrt{25+9}=\sqrt{34}\)
\(\sqrt{25}+\sqrt{9}=5+3=8=\sqrt{64}\)
mà 34 < 64 hay \(\sqrt{25+9}< \sqrt{25}+\sqrt{9}\)
b, \(\sqrt{a+b}< \sqrt{a}+\sqrt{b}\)
bình phương 2 vế ta được : \(a+b< a+2\sqrt{ab}+b\)
\(\Leftrightarrow2\sqrt{ab}>0\)vì \(a;b>0\)nên đẳng thức này luôn đúng )
Vậy ta có đpcm
a, Ta có \(\sqrt{25-16}=\sqrt{9}=3\)
\(\sqrt{25}-\sqrt{16}=5-4=1\)
Do 3 > 1 nên \(\sqrt{25-16}>\sqrt{25}-\sqrt{16}\)
a) căn 25 - 16 > căn 25 - căn 16
b)Với a>b>0a>b>0 nên \sqrt{a},\sqrt{b},\sqrt{a-b}a,b,− đều xác định
Để so sánh \sqrt{a}-\sqrt{b}a−b và \sqrt{a-b}− ta quy về so sánh \sqrt{a}a và \sqrt{a-b}+\sqrt{b}−+b.
+) (\sqrt{a})^2=a(a)2=a.
+) (\sqrt{a-b}+\sqrt{b})^2=(\sqrt{a-b})^2+2\sqrt{a-b}.\sqrt{b}+(\sqrt{b})^2=a-b+b+2\sqrt{a-b}.\sqrt{b}=a+2\sqrt{a-b}.\sqrt{b}(−+b)2=(−)2+2−.b+(b)2=a−b+b+2−.b=a+2−
.b.
Do a>b>0a>b>0 nên 2\sqrt{a-b}.\sqrt{b}>02−.b>0
\Rightarrow⇒ a+2\sqrt{a-b}.\sqrt{b}>aa+2−.b>a
\Rightarrow⇒ (\sqrt{a-b}+\sqrt{b})^2>(\sqrt{a})^2(−+b)2>(a)2
Do \sqrt{a},\sqrt{a-b}+\sqrt{b}>0a,−+b>0
\Rightarrow⇒ \sqrt{a-b}+\sqrt{b}>\sqrt{a}−+b>a
\Leftrightarrow⇔ \sqrt{a-b}>\sqrt{a}-\sqrt{b}−>a−b (đpcm)
Vậy \sqrt{a-b}>\sqrt{a}-\sqrt{b}−>a−b.
Với \(x>0;x\ne1\)
\(M=\left(\frac{1}{a-\sqrt{a}}+\frac{1}{\sqrt{a}-1}\right):\frac{\sqrt{a}+1}{a-2\sqrt{a}+1}\)
\(=\left(\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}+\frac{\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}\right):\frac{\sqrt{a}+1}{\left(\sqrt{a}-1\right)^2}\)
\(=\frac{\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}.\frac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}=\frac{\sqrt{a}-1}{\sqrt{a}}\)
\(=1-\frac{1}{\sqrt{a}}< 1\)hay M < 1
\(\sqrt{\dfrac{1}{600}}\)=\(\sqrt{\dfrac{1}{10^2\cdot6}}\)=\(\sqrt{\dfrac{1\cdot6}{10^2\cdot6\cdot6}}\)=\(\dfrac{\sqrt{6}}{60}\)
\(\sqrt{\dfrac{11}{540}}\)=\(\sqrt{\dfrac{11\cdot540}{540\cdot540}}\)=\(\dfrac{\sqrt{5940}}{540}\)=\(\dfrac{\sqrt{165}}{90}\)
\(\sqrt{\dfrac{3}{50}}\)=\(\sqrt{\dfrac{3\cdot50}{50\cdot50}}\)=\(\dfrac{\sqrt{150}}{50}\)=\(\dfrac{\sqrt{6}}{10}\)
\(\sqrt{\dfrac{5}{98}}\)=\(\sqrt{\dfrac{5\cdot98}{98\cdot98}}=\dfrac{\sqrt{490}}{98}=\dfrac{\sqrt{10}}{14}\)
\(\sqrt{\dfrac{\left(1-\sqrt{3}\right)^2}{27}}=\dfrac{3-\sqrt{3}}{9}\)
\(\sqrt{\dfrac{1}{600}}=\dfrac{\sqrt{6}}{60}\)
\(\sqrt{\dfrac{11}{540}}=\dfrac{\sqrt{165}}{90}\)
\(\sqrt{\dfrac{3}{50}}=\dfrac{\sqrt{6}}{10}\)
\(\sqrt{\dfrac{5}{98}}=\dfrac{\sqrt{10}}{14}\)
\(\sqrt{\dfrac{\left(1-\sqrt{3}\right)^2}{27}}=\dfrac{3-\sqrt{3}}{9}\)
Rút gọn các biểu thức sau với x≥0x≥0:
a) 2\(\sqrt{3x}\)-4\(\sqrt{3x}\)+27-3\(\sqrt{3x}\)=27-5\(\sqrt{3x}\)
b)3\(\sqrt{2x}\)-5\(\sqrt{8x}\)+7\(\sqrt{18x}\)+28
=3\(\sqrt{2x}\)-10\(\sqrt{2x}\)+21\(\sqrt{2x}\)+28
=14\(\sqrt{2x}\)+28=14(\(\sqrt{2x}\)+2)
a) \(2\sqrt{3x}-4\sqrt{3x}+27-3\sqrt{3x}\)
\(=\left(2\sqrt{3x}-4\sqrt{3x}-3\sqrt{3x}\right)+27\)
\(=-5\sqrt{3x}+27\)
a) 3\(\sqrt{3}\)=\(\sqrt{27}\)>\(\sqrt{12}\)
c) \(\frac{1}{3}\)\(\sqrt{51}\)=\(\sqrt{\frac{51}{9}}\)<\(\frac{1}{5}\)\(\sqrt{150}\)=\(\sqrt{\frac{150}{25}}\)=\(\sqrt{6}\)
b) 3\(\sqrt{5}\)=\(\sqrt{45}\)< 7=\(\sqrt{49}\)
d) \(\frac{1}{2}\sqrt{6}\)=\(\sqrt{\frac{6}{4}}\)=\(\sqrt{\frac{3}{2}}\)< 6\(\sqrt{\frac{1}{2}}\)=\(\sqrt{\frac{36}{2}}\)=\(\sqrt{18}\)
a) Ta có: 3√3=√32.3=√9.3=√2733=32.3=9.3=27
Vì √27>√1227>12 nên 3√3>√1233>12
Vậy 3√3>√1233>12.
b) Ta có: 3√5=√32.5=√4535=32.5=45
7=√72=√497=72=49
Vì √49>√4549>45 nên 7>3√57>35
Vậy 7>3√57>35.
c) Ta có: 13√51=√(13)2.51=√5191351=(13)2.51=519
15√150=√(15)2.150=√15025=√6=√6.99=√54915150=(15)2.150=15025=6=6.99=549
Vì √549>√519549>519 nên 13√51<15√1501351<15150
Vậy 13√51<15√1501351<15150.
d) Ta có: 12√6=√(12)2.6=√64126=(12)2.6=64
=√32=√3.12=√3.√12=32=3.12=3.12
Vì √3.√12<6√123.12<612 nên 12.√6<6√1212.6<612
Vậy 12√6<6√12126<612.