Cho đường tròn tâm O bán kính R, A cố định. Đường tròn tâm I di dộng qua A cắt đường tròn tâm O tại B và C. gọi M là giao điểm BC và tiếp tuyến tại A của đường tròn tâm I.Tìm tập hợp các điểm M
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét (O'): \(O'A\perp AB\) tại A và O'A là bán kính.
\(\Rightarrow\)AB là tiếp tuyến của (O') tại A.
\(\Rightarrow\widehat{NAB}\) là góc tạo bởi tiếp tuyến và dây cung chắn cung AN.
Mặt khác \(\widehat{AMN}\) là góc nội tiếp chắn cung AN.
\(\Rightarrow\widehat{AMN}=\widehat{NAB}\left(1\right)\)
Xét (O): \(\widehat{AMC}=\widehat{ABC}\left(=\dfrac{1}{2}sđ\stackrel\frown{AC}\right)\left(2\right)\)
\(\left(1\right),\left(2\right)\Rightarrow\widehat{NAB}=\widehat{ABC}\) nên AN//BC.
Theo tính chất 2 tiếp tuyến cắt nhau ta có \(AC=BC\)
Mặt khác \(OA=OB=R\)
\(\Rightarrow OC\) là trung trực AB hay \(OC\perp AB\)
\(\Rightarrow\Delta AOK\) vuông tại K
\(\Rightarrow\) Tập hợp K là đường tròn (C) đường kính AO cố định
b.
Do H là trực tâm \(\Rightarrow BH\perp AD\Rightarrow BH||AO\) (cùng vuông góc AD)
\(\Rightarrow\widehat{OAK}=\widehat{KBH}\) (so le trong)
Mà \(AK=BK\) (OC là trung trực AB)
\(\Rightarrow\Delta_VOAK=\Delta_VKBH\left(g.c.g\right)\)
\(\Rightarrow OK=KH\) hay K là trung điểm OH
\(\Rightarrow\overrightarrow{OH}=2\overrightarrow{OK}\Rightarrow H\) là ảnh của K qua phép vị tự tâm O tỉ số \(k=2\)
\(\Rightarrow\) Tập hợp H là đường tròn ảnh của (C) qua phép vị tự tâm O tỉ số \(k=2\) (với (C) là đường tròn đã xác định ở câu a)
Gọi BE cắt đường tròn (O) tại điểm thứ hai là N. Gọi L là hình chiếu của I trên ME.
Dễ thấy ^BNA = 900. Suy ra \(\Delta\)BNA ~ \(\Delta\)BCE (g.g) => BN.BE = BC.BA
Cũng dễ có \(\Delta\)BMA ~ \(\Delta\)BCK (g.g) => BC.BA = BM.BK. Do đó BN.BE = BM.BK
Suy ra tứ giác KENM nội tiếp. Từ đây ta có biến đổi góc: ^KNA = 3600 - ^ANM - ^KNM
= (1800 - ^ANM) + (1800 - ^KNM) = ^ABM + (1800 - ^AEM) = ^EFM + ^MEF = ^KFA
=> 4 điểm A,K,N,F cùng thuộc một đường tròn. Nói cách khác, đường tròn (I) cắt (O) tại N khác A
=> OI vuông góc AN. Mà AN cũng vuông góc BE nên BE // OI (1)
Mặt khác dễ có E là trung điểm dây KF của (I) => IE vuông góc KF => IE // AB (2)
Từ (1);(2) suy ra BOIE là hình bình hành => IE = OB = const
Ta lại có EM,AB cố định => Góc hợp bởi EM và AB không đổi. Vì IE // AB nên ^IEL không đổi
=> Sin^IEL = const hay \(\frac{IL}{IE}=const\). Mà IE không đổi (cmt) nên IL cũng không đổi
Vậy I di động trên đường thẳng cố định song song với ME, cách ME một khoảng không đổi (đpcm).