Bài 44 (trang 27 SGK Toán 9 Tập 1)
Đưa thừa số vào trong dấu căn
$3\sqrt{5}$ ;$-5 \sqrt{2}$ ;$-\dfrac{2}{3}\sqrt{x y}$ với $xy\ge0$ ; $x \sqrt{\dfrac{2}{x}}$ với $x>0$.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\sqrt{54}=\sqrt{9.6}=3\sqrt{6}\)
b, \(\sqrt{108}=\sqrt{36.3}=6\sqrt{3}\)
c, \(0,1\sqrt{20000}=0,1\sqrt{2.10000}=10\sqrt{2}\)
d, \(-0,05\sqrt{28800}=-0,05\sqrt{288.100}=-0,05.10.\sqrt{144.2}\)
\(=-0,5.12\sqrt{2}=-6\sqrt{2}\)
e, \(\sqrt{7.63.a^2}=\sqrt{7.7.9.a^2}=21\left|a\right|\)
a) √54=√9.6=√9.√6=3√654=9.6=9.6=36.
b) √108=√36.3=√36.√3=6√3108=36.3=36.3=63.
c) 0,1√20000=0,1√2.10000=0,1√2.√100000,120000=0,12.10000=0,12.10000
=0,1.100√2=10√2=0,1.1002=102.
d) −0,05√28800=−0,05√288.100−0,0528800=−0,05288.100
=−0,05√2.144.100=−0,05.√2.√144.√100=−0,052.144.100=−0,05.2.144.100
=−0,05.12.10√2=−0,05.12.102
=−6√2=−62.
e) √7.63.a2=√7.7.9.a2=√72.√9.√a27.63.a2=7.7.9.a2=72.9.a2
=7.3.|a|=21|a|
\(\sqrt{\dfrac{1}{600}}\)=\(\sqrt{\dfrac{1}{10^2\cdot6}}\)=\(\sqrt{\dfrac{1\cdot6}{10^2\cdot6\cdot6}}\)=\(\dfrac{\sqrt{6}}{60}\)
\(\sqrt{\dfrac{11}{540}}\)=\(\sqrt{\dfrac{11\cdot540}{540\cdot540}}\)=\(\dfrac{\sqrt{5940}}{540}\)=\(\dfrac{\sqrt{165}}{90}\)
\(\sqrt{\dfrac{3}{50}}\)=\(\sqrt{\dfrac{3\cdot50}{50\cdot50}}\)=\(\dfrac{\sqrt{150}}{50}\)=\(\dfrac{\sqrt{6}}{10}\)
\(\sqrt{\dfrac{5}{98}}\)=\(\sqrt{\dfrac{5\cdot98}{98\cdot98}}=\dfrac{\sqrt{490}}{98}=\dfrac{\sqrt{10}}{14}\)
\(\sqrt{\dfrac{\left(1-\sqrt{3}\right)^2}{27}}=\dfrac{3-\sqrt{3}}{9}\)
\(\sqrt{\dfrac{1}{600}}=\dfrac{\sqrt{6}}{60}\)
\(\sqrt{\dfrac{11}{540}}=\dfrac{\sqrt{165}}{90}\)
\(\sqrt{\dfrac{3}{50}}=\dfrac{\sqrt{6}}{10}\)
\(\sqrt{\dfrac{5}{98}}=\dfrac{\sqrt{10}}{14}\)
\(\sqrt{\dfrac{\left(1-\sqrt{3}\right)^2}{27}}=\dfrac{3-\sqrt{3}}{9}\)
a) Ta có:
4>3⇔√4>√3⇔2>√3⇔2.2>2.√3⇔4>2√34>3⇔4>3⇔2>3⇔2.2>2.3⇔4>23
Cách khác:
Ta có:
⎧⎨⎩42=16(2√3)2=22.(√3)2=4.3=12{42=16(23)2=22.(3)2=4.3=12
Vì 16>12⇔√16>√1216>12⇔16>12
Hay 4>2√34>23.
b) Vì 5>4⇔√5>√45>4⇔5>4
⇔√5>2⇔5>2
⇔−√5<−2⇔−5<−2 (Nhân cả hai vế bất phương trình trên với −1−1)
Vậy −√5<−2−5<−2.
a, Ta có : \(4=\sqrt{16}\); \(2\sqrt{3}=\sqrt{4.3}=\sqrt{12}\)
Do 12 < 16 hay \(2\sqrt{3}< 4\)
b, Ta có : \(-2=-\sqrt{4}\)
Do \(4< 5\Rightarrow\sqrt{4}< \sqrt{5}\Rightarrow-\sqrt{4}>-\sqrt{5}\)
Vậy \(-2>-\sqrt{5}\)
\(\frac{5}{\sqrt{10}}=\frac{5\sqrt{10}}{10}=\frac{\sqrt{10}}{2}\)
\(\frac{5}{2\sqrt{5}}=\frac{10\sqrt{5}}{20}=\frac{\sqrt{5}}{2}\)
\(\frac{1}{3\sqrt{20}}=\frac{3\sqrt{20}}{180}=\frac{\sqrt{20}}{60}=\frac{2\sqrt{5}}{60}=\frac{\sqrt{5}}{30}\)
\(\frac{2\sqrt{2}+2}{5\sqrt{2}}=\frac{10\sqrt{2}\left(\sqrt{2}+1\right)}{50}=\frac{20+10\sqrt{2}}{50}=\frac{10\left(2+\sqrt{2}\right)}{50}=\frac{2+\sqrt{2}}{5}\)
\(\frac{y+b\sqrt{y}}{b\sqrt{y}}=\frac{y\left(\sqrt{y}+b\right)}{by}=\frac{\sqrt{y}+b}{b}\)
+ Ta có:
5√10=5.√10√10.√10=5√10(√10)2=5√1010510=5.1010.10=510(10)2=51010
=5.√105.2=5.105.2=√102=102.
+ Ta có:
52√5=5.√52√5.√5=5√52.(√5.√5)=5√52(√5)2525=5.525.5=552.(5.5)=552(5)2
=5√52.5=√52=552.5=52.
+ Ta có:
13√20=1.√203√20.√20=√203.(√20.√20)=√203.(√20)21320=1.20320.20=203.(20.20)=203.(20)2
=√203.20=√22.560=2√560=2√52.30=√530=203.20=22.560=2560=252.30=530.
+ Ta có:
(2√2+2)5.√2=(2√2+2).√25√2.√2=2√2.√2+2.√25.(√2)2(22+2)5.2=(22+2).252.2=22.2+2.25.(2)2
=2.2+2√25.2=2(2+√2)5.2=2+√25=2.2+225.2=2(2+2)5.2=2+25.
+ Ta có:
y+b√yb√y=(y+b√y).√yb√y.√y=y√y+b√y.√yb.(√y)2y+byby=(y+by).yby.y=yy+by.yb.(y)2
=y√y+b(√y)2by=y√y+byby=yy+b(y)2by=yy+byby
=y(√y+b)b.y=√y+bb=y(y+b)b.y=y+bb.
Cách khác:
y+b√yb√y=(√y)2+b√yb√yy+byby=(y)2+byby=√y(√y+b)b√y=√y+bb
Nguồn : Bài 50 trang 30 SGK Toán 9 tập 1 - loigiaihay.com
#Ye Chi-Lien
Rút gọn các biểu thức sau với x≥0x≥0:
a) 2\(\sqrt{3x}\)-4\(\sqrt{3x}\)+27-3\(\sqrt{3x}\)=27-5\(\sqrt{3x}\)
b)3\(\sqrt{2x}\)-5\(\sqrt{8x}\)+7\(\sqrt{18x}\)+28
=3\(\sqrt{2x}\)-10\(\sqrt{2x}\)+21\(\sqrt{2x}\)+28
=14\(\sqrt{2x}\)+28=14(\(\sqrt{2x}\)+2)
a) \(2\sqrt{3x}-4\sqrt{3x}+27-3\sqrt{3x}\)
\(=\left(2\sqrt{3x}-4\sqrt{3x}-3\sqrt{3x}\right)+27\)
\(=-5\sqrt{3x}+27\)
Ta có:
+) 3√5=√32.5=√9.5=√45.35=32.5=9.5=45.
+) −5√2=−√52.2=−√25.2=−√50.−52=−52.2=−25.2=−50.
+) Với xy>0xy>0 thì √xyxy có nghĩa nên ta có:
−23√xy=−√(23)2.xy=−√49xy.−23xy=−(23)2.xy=−49xy.
+) Với x>0x>0 thì √2x2x có nghĩa nên ta có:
x√2x=√x2.2x=√x2.2xx2x=x2.2x=x2.2x=√2x.xx=√2x.
a, \(3\sqrt{5}=\sqrt{9.5}=\sqrt{45}\)
b, \(-5\sqrt{2}=-\sqrt{25.2}=-\sqrt{50}\)
c, \(-\frac{2}{3}\sqrt{xy}=-\sqrt{\frac{4}{9}xy}\)
d, \(x\sqrt{\frac{2}{x}}=\sqrt{\frac{2x^2}{x}}=\sqrt{2x}\)