K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 9 2022

x>y

hết 

s

o

s

 

ss

s

s

s

s

sssssssssssssssss

 

 

 

s

 

 

 

 

 

s

 

 

 

e

 

 

 

 

 

 

 

 

 

 

 

x

 

 

 

x

 

x

 

xx

 

x

x

x

28 tháng 9 2022

Đáp số : X > Y

10 tháng 8 2015

Ta có:\(\frac{x-y}{x+y}=\frac{\left(x-y\right)\left(x+y\right)}{\left(x+y\right)\left(x+y\right)}=\frac{x^2-y^2}{x^2+2xy+y^2}\)

Do x>y>0 =>x2+xy+y2<x2+2xy+y2

=>\(\frac{x^2-y^2}{x^2+xy+y^2}>\frac{x^2-y^2}{x^2+2xy+y^2}\)

=>\(\frac{x^2-y^2}{x^2+xy+y^2}>\frac{x-y}{x+y}\)

10 tháng 8 2015

\(\frac{\left(x+y\right)^3}{x^2-y^2}\)

\(\frac{\left(x^2-xy+y^2\right)}{x-y}=\frac{\left(x+y\right)\left(x^2-xy+y^2\right)}{\left(x+y\right)\left(x-y\right)}=\frac{x^3+y^3}{x^2-y^2}\)

Vì x > y > 0  => x^3 + y^3 < ( x+  y)^3 

=> \(\frac{x^3+y^3}{x^2+y^2}<\frac{\left(x+y\right)^3}{x^2-y^2}\)

HAy \(\frac{\left(x+y\right)^3}{x^2-y^2}>\frac{x^2-xy+y^2}{x-y}\)

18 tháng 4 2016

Đặt \(m=1-x=1-\frac{a+1}{a^2+a+1}=\frac{a^2+a+1-a-1}{a^2+a+1}=\frac{a^2}{a^2+a+1}\)

\(n=1-y=1-\frac{b+1}{b^2+b+1}=\frac{b^2+b+1-b-1}{b^2+b+1}=\frac{b^2}{b^2+b+1}\)

=>\(m:n=\frac{a^2}{a^2+a+1}:\frac{b^2}{b^2+b+1}\)

=>\(m:n=\frac{a^2}{a^2+a+1}.\frac{b^2+b+1}{b^2}\)

=>\(m:n=\frac{a^2.\left(b^2+b+1\right)}{\left(a^2+a+1\right).b^2}\)

=>\(m:n=\frac{a^2.b^2+a^2.b+a^2}{a^2.b^2+a.b^2+b^2}\)

=>\(m:n=\frac{a^2.b^2+ab.a+a^2}{a^2.b^2+ab.b+b^2}\)

Vì \(a>b=>ab.a>ab.b;a^2>b^2\)

=>\(a^2.b^2+ab.a+a^2>a^2.b^2+ab.b+b^2\)

=>\(\frac{a^2.b^2+ab.a+a^2}{a^2.b^2+ab.b+b^2}>1\)

=>m:n>1

=>m:n

=>1-x>y-y

=>x<y

Vậy x<y

3 tháng 12 2016

Hì bất đẳng thức tam giác : )

16 tháng 5 2019

\(B=\frac{x^2-y^2}{\left(x^2+y^2\right)}=\frac{\left(x-y\right)\left(x+y\right)}{\left(x+y\right)^2-2xy}\)(1)

Vì x > y > 0 '

\(\Rightarrow A=\frac{\left(x-y\right)}{\left(x+y\right)}=\frac{\left(x-y\right)\left(x+y\right)}{\left(x+y\right)^2}\)(2)

Mà x > y > 0 

\(\Rightarrow\left(x+y\right)^2-2xy< \left(x+y\right)^2\)(3)

Từ (1) , (2) và (3) \(\Rightarrow\frac{\left(x-y\right)\left(x+y\right)}{\left(x+y\right)^2-2xy}>\frac{\left(x-y\right)\left(x+y\right)}{\left(x+y\right)^2}\)

Hay \(A< B\)

Có thể thế vào: x=2;y=1.Ta có:

\(\frac{x-y}{x+y}=\frac{2-1}{2+1}=\frac{1}{3}\) và \(\frac{x^2-y^2}{x^2+y^2}=\frac{2^2-1^2}{2^2+1^2}=\frac{3}{5}\)

\(\Rightarrow\frac{1}{3}< \frac{3}{5}\Rightarrow\frac{x-y}{x+y}< \frac{x^2-y^2}{x^2+y^2}\)

cái này mik giải để giúp mọi người nếu bạn cho rằng sai thì giải thử xem.

25 tháng 2 2017

Xét: \(A=\frac{a+1}{a^2+a+1}-\frac{b+1}{b^2+b+1}=\frac{\left(a+1\right)\left(b^2+b+1\right)-\left(b+1\right)\left(a^2+a+1\right)}{\left(a^2+a+1\right)\left(b^2+b+1\right)}\)

Xét tử: \(T=\left(a+1\right)\left(b^2+b+1\right)-\left(b+1\right)\left(a^2+a+1\right)=ab^2-ba^2+ab-ba+a-b+b^2-a^2+b-a+1-1\)

\(=ab\left(b-a\right)+\left(a-b\right)+\left(b^2-a^2\right)-\left(a-b\right)\)

\(=ab\left(b-a\right)+\left(b-a\right)\left(b+a\right)=\left(b-a\right)\left(ab+a+b\right)< 0\), do a>b>0

Vậy A<0

Hay: \(\frac{a+1}{a^2+a+1}< \frac{b+1}{b^2+b+1}\)

25 tháng 2 2017

From \(a>b\Rightarrow a^2>b^2\Rightarrow a^2+a>b^2+b\)

\(\Rightarrow a^2+a+1>b^2+b+1\)

\(\Rightarrow\frac{1}{a^2+a+1}< \frac{1}{b^2+b+1}\)

\(\Rightarrow\frac{1+a}{a^2+a+1}< \frac{1+b}{b^2+b+1}\)\(\Rightarrow x< y\) 

 lí luận tạm thời nên có thể chưa chặt chẽ