Cho \(a^2+b^2=1\). Tìm GTNN của \(a^6+b^6\)
Giúp mik vs TT !!! Cho 2 tick lun
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=a^6+b^6=\left(a^2+b^2\right).\left(a^4-a^2b^2+b^4\right)=a^4-a^2b^2+b^4\)
\(=\left(a^2+b^2\right)-3a^2b^2=1-3a^2b^2\)
ta có : \(\left(a-b\right)^2\ge0\Rightarrow a^2+b^2\ge2ab\Rightarrow1\ge2ab\Rightarrow1\ge4a^2b^2\Rightarrow\frac{3}{4}\ge3a^2b^2\)
=> \(\frac{-3}{4}\le-3a^2b^2\)
từ đó: \(A=1-3a^2b^2\le1-\frac{3}{4}=\frac{1}{4}\)
Vậy max A = 1/4 khi \(a=b=\frac{1}{\sqrt{2}}.\)
b, -(2x-1)2+10I2x-1I+2018
Vì :
(2x-1)2 >= 0 với mọi x
=> -(2x-1)2 =< -0 với mọi x 1
I2x-1I >= 0 với mọi x
=> 10I2x-1I >= 0 với mọi x 2
Từ (1) và (2) :
=> -(2x-1)2+10I2x-1I =< -0 với mọi x
=> -(2x-1)2+10I2x-1I +2018 =< -0+2018 với mọi x
=> -(2x-1)2+10I2x-1I +2018 =< - 2018 với mọi x
=> GTLN là -2018
Vậy GTLN là -2018 .
Bài 1 :
a, \(A=x\left(x-6\right)+10\)
=x^2 - 6x + 10
=x^2 - 2.3x+9+1
=(x-3)^2 +1 >0 Với mọi x dương
a) \(\left(2x+\frac{1}{3}\right)^4\ge0\Rightarrow A\ge-1\)
Dấu \(=\)xảy ra khi \(2x+\frac{1}{3}=0\Leftrightarrow x=-\frac{1}{6}\).
b) \(\left(\frac{4}{9}x-\frac{2}{15}\right)^6\ge0\Rightarrow B\le3\)
Dấu \(=\)xảy ra khi \(\frac{4}{9}x-\frac{2}{15}=0\Leftrightarrow x=\frac{3}{10}\).
\(a^6+b^6=\left(a^2\right)^3+\left(b^2\right)^3=\)
\(=\left(a^2+b^2\right)\left(a^4-a^2b^2+b^4\right)=1.\left(\left(a^2+b^2\right)^2-3a^2b^2\right)\)
\(=1-3a^2b^2\le1\)
vậy GTNN là 1
\(\left(a-b\right)^2\ge0\Rightarrow a^2+b^2-2ab\ge0\Rightarrow2ab\le1\)(*)
\(a^6+b^6=\left(a^2\right)^{^3}+\left(b^2\right)^{^3}=\left(a^2+b^2\right)^{^3}-3a^2b^2\left(a^2+b^2\right)=1-3\left(ab\right)^2\)(**)
(*)&(**)\(a^6+b^6\ge1-3\left(\frac{1}{2}\right)^2=1-\frac{3}{4}=\frac{1}{4}\) đẳng thức khi \(a=b=+-\frac{\sqrt{2}}{2}\)