1) 1 khu vườn hình chử nhật có chu vi là 220m. Nếu giảm chiều dài 20%,tăng chiều rộng 30% thi diện tích tăng thêm 112m( vuông ). Tính các kích thước của khu vườn
2) Tìm nghiệm nguyên của phương trình 4x2 +2 = y2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi CD khu vườn là a (m)
CR khu vườn là b (m) đk: a;b >0
Theo bài, ta có:
\(\left\{{}\begin{matrix}2\left(a+b\right)=56\\\left(a+3\right)\left(b-1\right)=ab+5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+b=28\\3b-a=8\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=19\left(tm\right)\\b=9\left(tm\right)\end{matrix}\right.\)
Vậy.....
2/Gọi chiều dài,rộng lần lượt là a;b (m;a,b>0)
Từ đề bài,suy ra a + b = 28 m
Suy ra a = 28 - b.
Suy ra diện tích là b(28-b)
Theo đề bài,ta có phương trình: \(\left(b-2\right)\left(28-b+4\right)=b\left(28-b\right)+8\)
\(\Leftrightarrow\left(b-2\right)\left(32-b\right)=-b^2+28b+8\)
\(\Leftrightarrow-b^2+34b-64=-b^2+28b+8\)
\(\Leftrightarrow34b-64=28b+8\)
\(\Leftrightarrow6b-72=0\Leftrightarrow b=12\)
Suy ra chiều dài là: 28 - b = 28 - 12 = 16
Vậy ...
Gọi \(x\left(m\right)\) là chiều dài của mảnh vườn \(\left(x>0\right)\)
Nữa chu vi là: \(112:2=56\left(m\right)\)
Khi đó chiều rộng: \(56-x\left(m\right)\)
Chiều dài sau khi tăng: \(x+3\left(m\right)\)
Chiều rộng sau khi giảm: \(56-x-1=55-x\left(m\right)\)
Theo đề bài ta có:
\(x\left(56-x\right)+5=\left(x+3\right)\left(55-x\right)\)
\(\Leftrightarrow x=40\left(m\right)\left(tm\right)\)
Chiều rộng là: \(56-40=16\left(m\right)\)
Gọi \(x\left(m\right)\left(x>0\right)\) là chiều dài
Nửa chu vi là \(112:2=56\left(m\right)\)
\(56-x\left(m\right)\) là chiều rộng
Theo đề, ta có pt :
\(\left(x+3\right)\left(56-x-1\right)=x\left(56-x\right)+5\)
\(\Leftrightarrow56x-x^2-x+168-3x-3=56x-x^2+5\)
\(\Leftrightarrow-4x=-160\)
\(\Leftrightarrow x=40\left(tmdk\right)\)
Vậy chiều dài là 40m, chiều rộng là \(56-40=16m\)
Nửa chu vi: \(60:2=30\left(m\right)\)
Gọi chiều dài là x (m) ( 0<x<30 )
=> Chiều rộng là: \(30-x\) ( m )
Diện tích khu vườn đó là: \(x\left(30-x\right)\) \(\left(m^2\right)\)
Theo đề bài ta có pt:
\(\left(20+x\right)\left(30-x-2\right)=x\left(30-x\right)+10\)
\(\Leftrightarrow\left(20+x\right)\left(28-x\right)=x\left(30-x\right)+10\)
\(\Leftrightarrow560-20x+28x-x^2=30x-x^2+10\)
\(\Leftrightarrow-22x=-550\)
\(\Leftrightarrow x=25\left(tm\right)\)
=> Chiều rộng là: \(30-25=5\left(m\right)\)
Vậy chiều dài là: 25m
chiều rộng là 5m
Nửa chu vi là \(60:2=30\left(m\right)\)
Gọi độ dài chiều dài ban đầu là \(x\left(m;0< x< 30\right)\)
Thì chiều rộng ban đầu là \(30-x\left(m\right)\)
Diện tích ban đầu là \(x\left(30-x\right)\)
Chiều dài sau khi tăng thêm 20m là \(x+20\left(m\right)\)
Chiều rộng sau khi giảm 2m là \(30-x-2=28-x\)
Diện tích lúc sau là \(\left(x+20\right)\left(28-x\right)\)
Vì sau khi tăng chiều dài thêm 20m và giảm chiều rộng đi 2m thì diện tích khu vường tăng 10m2 nên ta có phương trình :
\(\left(x+20\right)\left(28-x\right)-x\left(30-x\right)=10\)
\(\Leftrightarrow28x-x^2+560-20x-30x+x^2=10\)
\(\Leftrightarrow-22x=-550\)
\(\Leftrightarrow x=25\left(nhận\right)\)
Vậy chiều dài khu vườn ban đâu là 25m, chiều rộng là 5m
Nửa chu vi khu vườn : 112 : 2 = 56m
Gọi chiều dài khu vườn là x ( m , \(x\inℕ,x< 56\))
=> Chiều rộng khu vườn 56 - x ( m )
Tăng chiều dài 3m và giảm chiều rộng 1m
=> Chiều dài mới = x + 3 ( m )
Chiều rộng mới = 56 - x - 1 = 55 - x
Diện tích ban đầu = x( 56 - x ) ( m2 )
Diện tích sau khi tăng giảm = ( x + 3 )( 55 - x ) ( m2 )
Diện tích khu vườn tăng 5m2
=> Ta có phương trình : x( 56 - x ) + 5 = ( x + 3 )( 55 - x )
<=> -x2 + 56x + 5 = -x2 + 52x + 165
<=> -x2 + 56x + x2 - 52x = 165 - 5
<=> 4x = 160
<=> x = 40 ( tmđk )
=> Chiều dài khu vườn = 40m
Chiều rộng khu vườn = 56 - 40 = 16m
Diện tích ban đầu = 40.16 = 640m2
Lời giải:
Gọi chiều dài và chiều rộng khu vườn ban đầu lần lượt là $a,b$ (m)
Theo bài ra ta có:
$a+b=100:2=50(1)$
$(a+2)(b-1)=ab-17$
$\Leftrightarrow ab-a+2b-2=ab-17$
$\Leftrightarrow -a+2b=-15(2)$
Từ $(1); (2)\Rightarrow b=\frac{35}{3}; a=\frac{115}{3}$ (m)
Diện tích khu vườn lúc đầu: $S=ab=\frac{115}{3}.\frac{35}{3}=\frac{4025}{9}$ (m2)