Tìm số nguyên x thỏa mãn \(x^2+x+1⋮x-1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4:
(x+1)(y-2)=5
=>\(\left(x+1;y-2\right)\in\left\{\left(1;5\right);\left(5;1\right);\left(-1;-5\right);\left(-5;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(0;7\right);\left(4;3\right);\left(-2;-3\right);\left(-6;1\right)\right\}\)
a) \(6xy+4x-9y-7=0\)
\(\Leftrightarrow2x.\left(3y+2\right)-9y-6-1=0\)
\(\Leftrightarrow2x.\left(3y+x\right)-3.\left(3y+2\right)=1\)
\(\Leftrightarrow\left(2x-3\right).\left(3y+2\right)=1\)
Mà \(x,y\in Z\Rightarrow2x-3;3y+2\in Z\)
Tự làm típ
\(A=x^3+y^3+xy\)
\(A=\left(x+y\right)\left(x^2-xy+y^2\right)+xy\)
\(A=x^2-xy+y^2+xy\)( vì \(x+y=1\))
\(A=x^2+y^2\)
Áp dụng bất đẳng thức Bunhiakovxky ta có :
\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x\cdot1+y\cdot1\right)^2=\left(x+y\right)^2=1\)
\(\Leftrightarrow2\left(x^2+y^2\right)\ge1\)
\(\Leftrightarrow x^2+y^2\ge\frac{1}{2}\)
Hay \(x^3+y^3+xy\ge\frac{1}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)
\(x^2-xy+y+2=0\)
\(\Leftrightarrow\left(x-\dfrac{y}{2}\right)^2-\left(\dfrac{y}{2}-1\right)^2+3=0\)
\(\Leftrightarrow\left(x-\dfrac{y}{2}\right)^2-\left(\dfrac{y}{2}-1\right)^2=1-4\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-\dfrac{y}{2}\right)^2=1\\\left(\dfrac{y}{2}-1\right)^2=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}2x-y=2\\2x-y=-2\end{matrix}\right.\\\left[{}\begin{matrix}y=6\\y=-2\end{matrix}\right.\end{matrix}\right.\)
với y=6 \(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=2\end{matrix}\right.\)
với y=-2 \(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
vậy S=\(\left\{\left(4;6\right);\left(2;6\right);\left(0;-2\right);\left(-2;-2\right)\right\}\)
\(x^2+x+1\) chia hết cho x-1
<=>\(x^2-x+2x-2+3\) chia hết cho x-1
<=>\(x\left(x-1\right)+2\left(x-1\right)+3\) chia hết cho x-1
<=>\(\left(x-1\right)\left(x+2\right)+3\) chia hết cho x-1
mà (x-1)(x+2) chia hết cho x-1 <=> 3 chia hết cho x-1
<=>\(x-1\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)
<=>\(x\in\left\{-2;0;2;4\right\}\)