1+2=?
1+22=?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=1+2+2^2+...+2^{80}\)
\(2A=2+2^2+2^3+...+2^{81}\)
\(2A-A=2+2^2+2^3+...+2^{81}-1-2-2^2-...-2^{80}\)
\(A=2^{81}-1\)
Nên A + 1 là:
\(A+1=2^{81}-1+1=2^{81}\)
b) \(B=1+3+3^2+...+3^{99}\)
\(3B=3+3^2+3^3+...+3^{100}\)
\(3B-B=3+3^2+3^3+...+3^{100}-1-3-3^2-...-3^{99}\)
\(2B=3^{100}-1\)
Nên 2B + 1 là:
\(2B+1=3^{100}-1+1=3^{100}\)
2)
a) \(2^x\cdot\left(1+2+2^2+...+2^{2015}\right)+1=2^{2016}\)
Gọi:
\(A=1+2+2^2+...+2^{2015}\)
\(2A=2+2^2+2^3+...+2^{2016}\)
\(A=2^{2016}-1\)
Ta có:
\(2^x\cdot\left(2^{2016}-1\right)+1=2^{2016}\)
\(\Rightarrow2^x\cdot\left(2^{2016}-1\right)=2^{2016}-1\)
\(\Rightarrow2^x=\dfrac{2^{2016}-1}{2^{2016}-1}=1\)
\(\Rightarrow2^x=2^0\)
\(\Rightarrow x=0\)
b) \(8^x-1=1+2+2^2+...+2^{2015}\)
Gọi: \(B=1+2+2^2+...+2^{2015}\)
\(2B=2+2^2+2^3+...+2^{2016}\)
\(B=2^{2016}-1\)
Ta có:
\(8^x-1=2^{2016}-1\)
\(\Rightarrow\left(2^3\right)^x-1=2^{2016}-1\)
\(\Rightarrow2^{3x}-1=2^{2016}-1\)
\(\Rightarrow2^{3x}=2^{2016}\)
\(\Rightarrow3x=2016\)
\(\Rightarrow x=\dfrac{2016}{3}\)
\(\Rightarrow x=672\)
\(=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+...+\dfrac{1}{22}-\dfrac{1}{24}\right)\)
\(=\dfrac{1}{2}\cdot\dfrac{12-1}{24}=\dfrac{11}{48}\)
B = 2 + 2 2 − 1 + 2 − 2 2 − 1 = ( 2 − 1 + 1 ) 2 + ( 2 − 1 − 1 ) 2 = 2 − 1 + 1 + 1 − 2 − 1 = 2
Lời giải:
Ta có:
\(S=1^{22}+2^{22}+3^{22}+...+2015^{22}\)
\(S=2^2(2^{20}-1)+3^2(3^{20}-1)+...+2015^2(2015^{20}-1)+(1^2+2^2+...+2015^2)\)
Xét số tổng quát \(a^2(a^{20}-1)\)
Nếu $a$ chẵn thì \(a\vdots 2\Rightarrow a^2\vdots 4\Rightarrow a^2(a^{20}-1)\vdots 4\)
Nếu $a$ lẻ. Ta biết một số chính phương chia $4$ dư $0,1$. Mà $a$ lẻ nên \(a^2\equiv 1\pmod 4\)
\(\Rightarrow a^{20}\equiv 1^{10}\equiv 1\pmod 4\)
\(\Rightarrow a^2(a^{20}-1)\vdots 4\)
Vậy \(a^2(a^{20}-1)\vdots 4\) (1)
Mặt khác:
Xét $a$ chia hết cho $5$ suy ra \(a^2\vdots 25\Rightarrow a^2(a^{20}-1)\vdots 25\)
Xét $a$ không chia hết cho $5$ tức $(a,5)$ nguyên tố cùng nhau.
Áp dụng định lý Fermat nhỏ: \(a^4\equiv 1\pmod 5\)
Có \(a^{20}-1=(a^4-1)[(a^4)^4+(a^4)^3+(a^4)^2+(a^4)^1+1]\)
\(a^4\equiv 1\pmod 5\rightarrow a^4-1\equiv 0\pmod 5\)
\((a^4)^4+(a^4)^3+(a^4)^2+(a^4)^1+1\equiv 1^4+1^3+1^2+1^1+1\equiv 5\equiv 0\pmod 5\)
Do đó: \(a^{20}-1=(a^4-1)[(a^4)^4+...+1]\vdots 25\)
Vậy trong mọi TH thì \(a^2(a^{20}-1)\vdots 25\) (2)
Từ (1)(2) suy ra \(a^2(a^{20}-1)\vdots 100\)
Do đó: \(2^2(2^{20}-1)+3^2(3^{20}-1)+...+2015^2(2015^{20}-1)\vdots 100\)
Mặt khác ta có công thức sau:
\(1^2+2^2+..+n^2=\frac{n(n+1)(2n+1)}{6}\)
\(\Rightarrow 1^2+2^2+..+2015^2=\frac{2015(2015+1)(2.2015+1)}{6}\equiv 40\pmod {100}\)
Do đó S có tận cùng là 40
a: \(=\dfrac{3}{22}\cdot22\cdot\dfrac{3}{11}=3\cdot\dfrac{3}{11}=\dfrac{9}{11}\)
b: \(=\dfrac{5}{6}\cdot\dfrac{2}{5}=\dfrac{1}{3}\)
c: =17/21(3/5+2/5)=17/21
\(1+2=3\)
\(1+22=23\)
mik trả lời đầu tk mik nha !!!
1+2=3
1+22=23
k mik nha mik đang âm điểm