K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 4 2021

undefined

a: \(B=\dfrac{x+\sqrt{x}-1-x+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}-1}{1}\)

\(=\dfrac{\sqrt{x}}{x+\sqrt{x}+1}\)

b: \(B-\dfrac{1}{3}=\dfrac{\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{1}{3}\)

\(=\dfrac{3\sqrt{x}-x-\sqrt{x}-1}{3\left(x+\sqrt{x}+1\right)}\)

\(=\dfrac{-\left(\sqrt{x}+1\right)^2}{3\left(x+\sqrt{x}+1\right)}< 0\)

=>B<1/3

23 tháng 9 2021

Câu 5:

Đoạn văn nói về sự việc chị Dậu cự lại Cai lệ và người nhà Lý trưởng để bảo vệ chồng, qua đây, có thể thấy sức mạnh tiềm tàng, lòng yêu thương chồng của chị.

1 tháng 5 2023

Câu 10 của em đây nhé:

\(\dfrac{17}{2}\) \(\times\) \(\dfrac{3}{5}\) + \(\dfrac{3}{5}\) \(\times\) \(\dfrac{1}{2}\) + \(\dfrac{3}{5}\)

\(\dfrac{17}{2}\) \(\times\) \(\dfrac{3}{5}\) + \(\dfrac{3}{5}\) \(\times\) \(\dfrac{1}{2}\) + \(\dfrac{3}{5}\) \(\times\) 1

\(\dfrac{3}{5}\) \(\times\) ( \(\dfrac{17}{2}\) + \(\dfrac{1}{2}\) + 1)

\(\dfrac{3}{5}\) \(\times\) ( \(\dfrac{18}{2}\) + 1)

\(\dfrac{3}{5}\) \(\times\) ( 9 + 1)

\(\dfrac{3}{5}\) \(\times\) 10

= 6

1 tháng 5 2023

Mn giải chi tiết giúp mik với

10 tháng 6 2021

1.2 với \(x\ge0,x\in Z\)

A=\(\dfrac{2\sqrt{x}+7}{\sqrt{x}+2}=2+\dfrac{3}{\sqrt{x}+2}\in Z< =>\sqrt{x}+2\inƯ\left(3\right)=\left(\pm1;\pm3\right)\)

*\(\sqrt{x}+2=1=>\sqrt{x}=-1\)(vô lí)

*\(\sqrt{x}+2=-1=>\sqrt{x}=-3\)(vô lí
*\(\sqrt{x}+2=3=>x=1\)(TM)

*\(\sqrt{x}+2=-3=\sqrt{x}=-5\)(vô lí)

vậy x=1 thì A\(\in Z\)

 

21 tháng 3 2022

Câu 1: Chọn C.

Câu 2: Chọn D.

Câu 3: Chọn A.

Câu 4: Chọn A.

Câu 5: Chọn D (x=13/2).

Câu 6: Chọn A.

Câu 7: Chọn B.

Câu 8: Chọn D.

Câu 9: Chọn a.

Câu 10: Chọn d.

21 tháng 3 2022

Còn câu 9 10 bạn bt lm k ạ

28 tháng 4 2021

Câu nèo thé ?_?

28 tháng 4 2021

Câu nào thế bạn????

14 tháng 6 2021

\(A=\dfrac{2\sqrt{x}+17}{\sqrt{x+5}}=\dfrac{2\sqrt{x}+10}{\sqrt{x}+5}+\dfrac{7}{\sqrt{x}+5}=2+\dfrac{7}{\sqrt{x}+5}\) 

Để \(A\) ∈ \(Z\) thì \(\dfrac{7}{\sqrt{x}+5}\) phải ∈ \(Z\)

=> \(\sqrt{x}+5\) ∈ \(Ư\left(7\right)=\left\{-7;-1;1;7\right\}\)

# Với \(\sqrt{x}+5=-7=>\sqrt{x}=-12\)(Loại)

#Với \(\sqrt{x}+5=-1=>\sqrt{x}=-6\)(Loại)

#Với \(\sqrt{x}+5=1=>\sqrt{x}=-4\left(Loại\right)\)

#Với \(\sqrt{x}+5=7=>\sqrt{x}=2< =>x=4\left(Nhận\right)\)

Vậy \(x=4\) thì \(A\)\(Z\)

28 tháng 9 2021

\(\sqrt[3]{\dfrac{a^4}{b^2\left(a^2-ab+b^2\right)}}+\sqrt[3]{\dfrac{b^4}{c^2\left(b^2-bc+c^2\right)}}\sqrt[3]{\dfrac{c^4}{a^2\left(c^2-ac+b^2\right)}}\) \(\text{≥}3\)

\(Ta\) \(Có\) : \(\sqrt[3]{\dfrac{a^4}{b^2\left(a^2-ab+b^2\right)}}=\sqrt[3]{\dfrac{a^6}{ab.ab\left(a^2-ab+b^2\right)}}=\dfrac{a^2}{\sqrt[3]{ab.ab.\left(a^2-ab+b^2\right)}}\) 

\(Áp\) \(dụng\) \(bđt\) \(AM-GM\) 

\(\sqrt[3]{ab.ab\left(a^2-ab+b^2\right)}\text{≤}\)  \(\dfrac{ab+ab+a^2-ab+b^2}{3}\) 

\(=>\dfrac{a^2}{\sqrt[3]{ab.ab\left(a^2-ab+b^2\right)}}\) \(\text{≥}\) \(\dfrac{3a^2}{a^2+ab+b^2}\) \(Hay\) \(\sqrt[3]{\dfrac{a^4}{b^2\left(a^2-ab+b^2\right)}}\text{≥}\dfrac{3a^2}{a^2+ab+b^2}\)

Tương tự ta cũng có : 

\(\sqrt[3]{\dfrac{b^4}{c^2\left(b^2-bc+c^2\right)}}\text{≥}\dfrac{3b^2}{b^2+bc+c^2}\) 

\(\sqrt[3]{\dfrac{c^4}{a^2\left(c^2-ac+a^2\right)}}\text{≥}\dfrac{3c^2}{a^2+ac+c^2}\)

\(=>\text{​​}\text{​​}\)\(\sqrt[3]{\dfrac{a^4}{b^2\left(a^2-ab+b^2\right)}}+\sqrt[3]{\dfrac{b^4}{c^2\left(b^2-bc+c^2\right)}}\sqrt[3]{\dfrac{c^4}{a^2\left(c^2-ac+b^2\right)}}\)  \(\text{≥}\) \(3\left(\dfrac{a^2}{a^2+ab+b^2}+\dfrac{b^2}{b^2+bc+c^2}+\dfrac{c^2}{a^2+ac+c^2}\right)\) 

Cần c/m \(\left(\dfrac{a^2}{a^2+ab+b^2}+\dfrac{b^2}{b^2+bc+c^2}+\dfrac{c^2}{a^2+ac+c^2}\right)\) ≥ \(1\) 

Ta có : \(\dfrac{a^2}{a^2+ab+b^2}\text{≥}\dfrac{1}{3}\) 

\(< =>3a^2\text{≥}a^2+ab+b^2\) \(< =>2a^2-b\left(a+b\right)\text{≥}0\) (1)

Lại có : \(a^2\text{≥}-b\left(a+b\right)\) (2)

Từ (1) và (2) => \(\dfrac{a^2}{a^2+ab+b^2}\text{≥}\dfrac{1}{3}\)

Tương tự ta cũng có :

 \(\dfrac{b^2}{b^2+bc+c^2}\text{≥}\dfrac{1}{3}\) 

\(\dfrac{c^2}{a^2+ac+c^2}\text{≥}\dfrac{1}{3}\)

Do đó \(\dfrac{a^2}{a^2+ab+b^2}+\dfrac{b^2}{b^2+bc+c^2}+\dfrac{c^2}{a^2+ac+c^2}\text{≥}1\)

Suy ra :  \(\sqrt[3]{\dfrac{a^4}{b^2\left(a^2-ab+b^2\right)}}+\sqrt[3]{\dfrac{b^4}{c^2\left(b^2-bc+c^2\right)}}\sqrt[3]{\dfrac{c^4}{a^2\left(c^2-ac+b^2\right)}}\) \(\text{≥}\) \(3\) 

Đẳng thức xảy ra <=> \(a=b=c=1\)