K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 1 2017

Xét A = 1/5 + 1/13 + ... + 1/(n²+(n+1)²) 
phần tử tổng quát của chuổi trên có dạng: 
uk = 1 /[k²+(k+1)²] với k chạy từ 1 --> n 

có: k² + (k+1)² ≥ 2k(k+1) (dùng hằng đẳng thức là ra) 
<=> 1/[k² + (k+1)² ≤ 1 /2k(k+1) 

* Xét: B = 1/1.2 + 1/2.3 + ... + 1/n(n+1) 
thấy: 1/k(k+1) = 1/k - 1/(k+1), thay k từ 1 --> n ta có: 

1/1.2 = 1/1 - 1/2 
1/2.3 = 1/2 - 1/3 
1/3.4 = 1/3 - 1/4 
.... 
1/n(n+1) = 1/n - 1/(n+1) 
cộng theo vế, (chú ý đơn giản) ta có: 
B = 1 - 1/(n+1) < 1 

5 tháng 1 2017

be hon 1/2 ma ban

23 tháng 12 2016

Bài 1:

\(P=\frac{\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}}{\frac{5}{2003}+\frac{5}{2004}-\frac{5}{2005}}-\frac{\frac{2}{2002}+\frac{2}{2003}-\frac{2}{2004}}{\frac{3}{2002}+\frac{3}{2003}-\frac{3}{2004}}\)

\(\Rightarrow P=\frac{1\left(\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}\right)}{5\left(\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}\right)}-\frac{2\left(\frac{1}{2002}+\frac{1}{2003}-\frac{1}{2002}\right)}{3\left(\frac{1}{2002}+\frac{1}{2003}-\frac{1}{2004}\right)}\)

\(\Rightarrow P=\frac{1}{5}-\frac{2}{3}\)

\(\Rightarrow P=\frac{-7}{15}\)

Vậy \(P=\frac{-7}{15}\)

Bài 2:
Ta có: \(S=23+43+63+...+203\)

\(\Rightarrow S=13+10+20+23+...+103+100\)

\(\Rightarrow S=\left(13+23+...+103\right)+\left(10+20+...+100\right)\)

\(\Rightarrow S=3025+450\)

\(\Rightarrow S=3475\)

Vậy S = 3475

23 tháng 12 2016

1. \(P=\frac{\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}}{\frac{5}{2003}+\frac{5}{2004}-\frac{5}{2005}}-\frac{\frac{2}{2002}+\frac{2}{2003}-\frac{2}{2004}}{\frac{3}{2002}+\frac{3}{2003}-\frac{3}{2004}}\)

=> P =\(\frac{\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}}{5\left(\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}\right)}-\frac{2\left(\frac{1}{2002}+\frac{1}{2003}-\frac{1}{2004}\right)}{3\left(\frac{1}{2002}+\frac{1}{2003}-\frac{1}{2004}\right)}\)

=> P = \(\frac{1}{5}-\frac{2}{3}\)

P = \(\frac{3}{15}-\frac{10}{15}\)

=> P =\(\frac{-7}{15}\)

2. ta có:

S = 23 + 43 + 63 +...+ 203

=> S = 13 + 10 + 23 + 20 +...+ 103 + 100

=> S = ( 13 + 23+...+ 103 ) + ( 10 + 20 +...+ 100 )

=> S = 3025 + 550

=> S = 3575

Vậy S = 3575

21 tháng 1 2017

ko bit

9 tháng 1 2022

Ko biết

21 tháng 7 2016

Ta có \(5=1^2+2^2\) ; \(13=2^2+3^2\) ....

=> mẫu thức sẽ có dạng là \(n^2+\left(n+1\right)^2\)

Dễ dàng chứng ming được BĐT \(n^2+\left(n+1\right)^2>2n\left(n+1\right)\) với mọi n dương

=> \(\frac{1}{5}< \frac{1}{2.1.2}\) ; \(\frac{1}{13}< \frac{1}{2.2.3}\)....; \(\frac{1}{2002^2+2003^2}< \frac{1}{2.2002.2003}\)

=> \(\frac{1}{5}+\frac{1}{13}+...+\frac{1}{2002^2+2003^2}< \frac{1}{2}\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2002.2003}\right)\)

=> \(\frac{1}{5}+\frac{1}{13}+...+\frac{1}{2002^2+2003^2}< \frac{1}{2}\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2002}-\frac{1}{2003}\right)\)

=> \(\frac{1}{5}+\frac{1}{13}+...+\frac{1}{2002^2+2003^2}< \frac{1}{2}\left(1-\frac{1}{2003}\right)< \frac{1}{2}\)

=> Đpcm

Có j không hiểu có thể hỏi lại mk 

Chúc bạn làm bài tốt

 

15 tháng 3 2017

1/2^2 < 1/(1.2)= 1-1/2 
1/3^2 <1/(2.3)=1/2-1/3 
1/4^2 <1/(3.4)=1/3-1/4 
...... 
1/100^2 < 1/99-1/100 
cộng vế với vế ta được 1/2^2 +1/3^2+...< 1-1/2+1/2-1/3+....+1/99-1/100=1-1/100 
=> ĐPCM

15 tháng 3 2017

làm ci tiết được k bn

30 tháng 1 2016

làm ơn tách ra giùm mk

7 tháng 4 2019

ta có 1/2^2<1/1.2;1/3^2<1/2.3;...;1/2002^2<2001.2002;1/2003^2<1/2002.2003

suy ra 1/1.2+1/2.3+...+1/2001.2002+1/2002.2003

= 1-2/2+1/2-1/3+...+1/2001-1/2002+1/2002-1/2003

=1-1/2003

mà 1/2^2+1/3^2+...+1/2002^2+1/2003^2<1-1/2003<1

7 tháng 4 2019

Ta có:

1/2= 1/1.2

1/32 < 1/2.3

1/20022 < 1/2001.2002

1/20032 < 1/2002.2003

Suy ra : 1/22 + 1/32 + 1/20022 + 1/20032 < 1/1.2 + 1/2.3 + 1/2001.2002 + 1/2002.2003

1/22 + 1/32 + 1/20022 + 1/20032 < (1 - 1/2 + 1/2 -1/3 )+(1/2001 - 1/2002 + 1/2002 -1/2003)

1/22 + 1/32 + 1/2002+ 1/2003<  2/3 +1/2002 -1/2003<1

1/22 + 1/3+ 1/20022 + 1/20032 < 1

12 tháng 6 2018

Bạn tham khảo định lý Fermat để làm được bài nhé

13 tháng 6 2018

ai chả biết là dùng định lí Fermat nhỏ nhưng làm thế nào mới quan trọng