Cho tam giác ABC, M là trung điểm của AC. Trên tia BM lấy điểm E sao cho là trung điểm của BE. a) Chứng minh tam giác AMB = tam giác CME b) Chứng minh AB//CE c) Gọi D là 1 điểm thuộc BC sao cho DA=DF (F thuộc tia đối của tia DA). Chứng minh C là trung điểm của EF
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Xét tam giác BMC và tam giác DMA có
MB=MD(gt) BMC=DMA(đối đỉnh)
MA=MC(vì M là trung điềm AC)
Vậy tam giác BMC = tam giác DMA(c-g-c)
=>MBC=MDA( 2 góc tương ứng)
=> AD // BC
b. Xét tam giác AMB và tam giác CMD có
MA=MC(vì M là trung điềm AC)
AMB=CMD( đối đỉnh)
MB=MD(gt)
Vậy tam giác AMB = tam giác CMD(c-g-c)
=> AB=CD(2 cạnh tương ứng)
mà AB=AC(vì tam giác ABC cân tại A)
=> AC=CD
=> tam giác ACD cân tại C
c. trong tam giác DEB có M là trung điểm của BD( vì MD=MB)
=> EM là đường trung tuyến thứ nhất (1)
mặt khác AC=CE(gt)
MC=1/2 AC (vì M là trung điềm AC)
=> MC= 1/2 CE
a: Xét ΔAMB và ΔDMC có
MA=MD
\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)
MB=MC
Do đó: ΔAMB=ΔDMC
b: ta có; ΔAMB=ΔDMC
=>AB=DC
Ta có: ΔAMB=ΔDMC
=>\(\widehat{MAB}=\widehat{MDC}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AB//DC
c: Xét ΔNAB và ΔNCE có
NA=NC
\(\widehat{ANB}=\widehat{CNE}\)(hai góc đối đỉnh)
NB=NE
Do đó: ΔNAB=ΔNCE
=>AB=CE
Ta có: ΔNAB=ΔNCE
=>\(\widehat{NAB}=\widehat{NCE}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AB//CE
Ta có: AB//CE
AB//CD
CE,CD có điểm chung là C
Do đó: E,C,D thẳng hàng
Ta có: EC=AB
CD=AB
Do đó: EC=CD
mà E,C,D thẳng hàng
nên C là trung điểm của ED
a: Xét ΔAMB và ΔCMD có
MA=MC
\(\widehat{AMB}=\widehat{CMD}\)
MB=MD
Do đó: ΔAMB=ΔCMD
b: Xét tứ giác ABCD có
M la trung điểm của AC
M là trung điểm của BD
DO đó: ABCD là hình bình hành
Suy ra: AB//CD và AB=CD
c) Δ ABK = Δ ADK (câu b) => BK = DK (2 cạnh tương ứng)
và ABK = ADK (2 góc tương ứng)
Mà ABK + KBE = 180o (kề bù)
ADK + KDC = 180o (kề bù)
nên KBE = KDC
Xét Δ KBE và Δ KDC có:
BE = CD (gt)
KBE = KDC (cmt)
BK = DK (cmt)
Do đó, Δ KBE = Δ KDC (c.g.c)
=> BKE = DKC (2 góc tương ứng)
Lại có: BKD + DKC = 180o (kề bù)
Do đó, BKE + BKD = 180o
=> EKD = 180o
hay 3 điểm E, K, D thẳng hàng (đpcm)
a) Sửa đề: ΔAMB=ΔDMC
Xét ΔAMB và ΔDMC có
MA=MD(gt)
\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)
MB=MC(M là trung điểm của BC)
Do đó: ΔAMB=ΔDMC(c-g-c)