K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 1 2017

chào bạn!! :v

A B C D E M F K

Bài làm

a) Xét tam giác MDB và tam giác MEF có:

DM = ME ( M là trung điểm DE )

\(\widehat{DMB}=\widehat{EMC}\) ( hai góc đối )

BM = MF ( gt )

=> Tam giác MDB = tam giác MEF ( c.g.c )

b) Vì tam giác MDB = tam giác MEF ( cmt )

=> EF = BD ( hai cạnh tương ứng )

Mà BD = EC ( gt )

=> EF = EC

=> Tam giác CEF cân tại E ( đpcm )

c) 

2 tháng 2 2018

a) Xét tam giác MBD và tam giác MFE có:

MB = MF (gt)

MD = ME (gt)

\(\widehat{DMB}=\widehat{EMF}\)  (Hai góc đối đỉnh)

\(\Rightarrow\Delta MBD=\Delta MFE\left(c-g-c\right)\)

b) Do \(\Delta MBD=\Delta MFE\Rightarrow BD=FE\)

Mà BD = EC nên EF = EC.

Vậy tam giác CEF cân tại E.

c) Do \(\Delta MBD=\Delta MFE\Rightarrow\widehat{BDM}=\widehat{FEM}\)

Mà chúng lại ở vị trí so le trong nên AB // FE.

Suy ra \(\widehat{BAC}=\widehat{AEF}\)

Lại có \(\widehat{BAC}=2\widehat{KAE}\)  (Tính chất phân giác)

\(\widehat{AEF}=2\widehat{FCE}\)  (Góc ngoài tại đỉnh cân)

\(\Rightarrow\widehat{KAE}=\widehat{ECF}\)

Chúng lại ở vị trí so le trong nên AK // CF.

2 tháng 2 2018

A A B B C C D D E E M M F F K K

Hình vẽ

16 tháng 7 2021

Câu C bạn cm AFCE là hình chữ nhật , FE là đường chéo => E,F,M thẳng hàng vì 2 đường chéo hình chữ nhật đi qua trung điểm của mỗi đường.

 

13 tháng 1 2022

vào đây tham khảo nhé

https://olm.vn/hoi-dap/detail/98773432332.html

a: Xét ΔMDB và ΔMEF có

MD=ME

\(\widehat{DMB}=\widehat{EMF}\)

MB=MF

Do đó: ΔMDB=ΔMEF

b: Ta có: ΔMDB=ΔMEF

nên EF=DB=EC

hay ΔECF cân tại E

12 tháng 3 2017

câu d vẽ tam giác đều ACO .từ o kẻ đường vuông góc với hk tại p.tam giác  CAH  BẰNG tam giác COP cạnh huyền góc nhọn.                 suy ra CP=AH SUY RA PK=PC=AH.tam giác OKP BẰNG tam giác OCP C.G.C                                                                                              SUY RA GÓC OKC = 15 . GÓC AKC=30 suy ra góc KAC = 180-30-75=75 SUY RA BAK=45

12 tháng 3 2017

góc BAK=45

2 tháng 2 2021
hereNhãn

opend up

6 tháng 2 2021

a) Xét ΔABF và ΔCNF có:

       AF = CF (F là trung điểm của AC)

        ∠AFB = CFN (2 góc đối đỉnh)

        FB = FN (gt)

⇒ ΔABF = ΔCNF (c.g.c)

⇒ ∠ABF = ∠CNF (2 góc tương ứng)

mà 2 góc này ở vị trí so le trong  ⇒ AB // NC

Xét ΔACE và ΔBME có:

      AE = BE (E là trung điểm của AB)

      ∠AEC = ∠BEM (2 góc đối đỉnh)

       EC = EM (gt)

⇒ ΔACE = ΔBME (c.g.c)

⇒ ∠ACE = ∠BME (2 góc tương ứng)

mà 2 góc này ở vị trí so le trong  ⇒ AC // MB

b) Xét ΔANF và ΔCBF có:

        AF = CF (F là trung điểm của AC)

        ∠AFN = ∠CFB (2 góc đối đỉnh)

         FN = FB (gt)

⇒ ΔANF = ΔCBF (c.g.c)

⇒ ∠ANF = ∠CBF (2 góc tương ứng)

mà 2 góc này ở vị trí so le trong ⇒ AN // BC (1)

Xét ΔAME và ΔBCE có:

      AE = BE (E là trung điểm của AB)

      ∠AEM = ∠BEC (2 góc đối đỉnh)

       EM = EC (gt)

⇒ ΔAME = ΔBCE (c.g.c)

⇒ ∠AME = ∠BCE (2 góc tương ứng)

mà 2 góc ở vị trí so le trong ⇒ AM // BC (2)

Từ (1) và (2) ⇒ 3 điểm M, A, N thẳng hàng

c) Ta có: ΔANF = ΔCBF (theo b)

⇒ AN = BC (2 cạnh tương ứng) (3)

Ta có: ΔAME = ΔBCE (theo b)

⇒ AM = BC (2 cạnh tương ứng) (4)

Từ (3) và (4) ⇒ AM = AN

image