Cho biểu thức : \(A=1+2^2+2^3+2^4+...+2^{99}\)
Chứng minh rằng A chia hết cho 13
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(A=3+3^2+3^3+3^4+...+3^{99}\)
\(=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{97}+3^{98}+3^{99}\right)\)
\(=13\left(1+3+3^2\right)+13\left(3^3+3^4+3^5\right)+...+13\left(3^{96}+3^{97}+3^{98}\right)\)
\(=13\left(1+3+3^2+3^3+3^4+3^5+...+3^{98}\right)\)
\(\Rightarrow\)A chia hết cho 13
Bài 1 : \(A=1+3+3^2+...+3^{31}\)
a. \(A=\left(1+3+3^2\right)+...+3^9.\left(1.3.3^2\right)\)
\(\Rightarrow A=13+3^9.13\)
\(\Rightarrow A=13.\left(1+...+3^9\right)\)
\(\Rightarrow A⋮13\)
b. \(A=\left(1+3+3^2+3^3\right)+...+3^8.\left(1+3+3^2+3^3\right)\)
\(\Rightarrow A=40+...+3^8.40\)
\(\Rightarrow A=40.\left(1+...+3^8\right)\)
\(\Rightarrow A⋮40\)
Bài 2:
Ta có: \(C=3+3^2+3^4+...+3^{100}\)
\(\Rightarrow C=(3+3^2+3^3+3^4)+...+(3^{97}+3^{98}+3^{99}+3^{100})\)
\(\Rightarrow3.(1+3+3^2+3^3)+...+3^{97}.(1+3+3^2+3^3)\)
\(\Rightarrow3.40+...+3^{97}.40\)
Vì tất cả các số hạng của biểu thức C đều chia hết cho 40
\(\Rightarrow C⋮40\)
Vậy \(C⋮40\)
A=(13+132)+(133+134)+.......................+(1399+13100)
A=1.(13+132)+132.(13+132)+..............+1398.(13+132)
A=1.182+132.182+..........................+1398.182
A+182.(1+132+..............+1398) Chia hết cho 182
--> A chia hết cho 182
Bài 4 :
Thay x=y+5 , ta có :
a ) ( y+5)*(y5+2)+y*(y-2)-2y*(y+5)+65
=(y+5)*(y+7)+y^2-2y-2y^2-10y+65
=y^2+7y+5y+35-y^2-2y-2y^2-10y+65
= 100
Bài 5 :
A = 15x-23y
B = 2x-3y
Ta có : A-B
= ( 15x -23y)-(2x-3y)
=15x-23y-2x-3y
=13x-26y
=13x*(x-2y) chia hết cho 13
=> Nếu A chia hết cho 13 thì B chia hết cho 13 và ngược lại
Vì 13 là lẻ \(\Rightarrow\) 13, 132, 133, 134, 135, 136 là lẻ.
Mà lẻ + lẻ + lẻ + lẻ + lẻ + lẻ = chẵn nên 13 + 132 + 133 + 134 + 135 + 136 là chẵn. \(\Rightarrow\) 13 + 132 + 133 + 134 + 135 + 136 \(⋮\) 2
\(\Rightarrow\) ĐPCM
A = 1 + 22 + 23 + 24 + ......... + 299
A = (1 + 22 + 23 ) + (24 + 25 + 26) + ........... + (297 + 298 + 299)
A = (1 + 4 + 8) + 24.(1 + 4 + 8) + ................. + 297.(1 + 4 + 8)
A = 13 + 24.13 + .............. + 297.13
A = 13.(1 + 24 + ........... + 297)