K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 6 2015

A=\(\frac{x+y-y}{x+y}+\frac{y+z-z}{y+z}+\frac{z+x-x}{x+z}\)

A=\(3-\left(\frac{x}{x+z}+\frac{y}{x+y}+\frac{z}{y+z}\right)\)

Mà :\(\frac{x}{x+z}>\frac{x}{x+y+z};\frac{x}{y+z}>\frac{y}{x+y+z};\frac{z}{x+z}>\frac{z}{x+y+z}\)

=> A < 2                                        (1)

Mặt khác A=\(\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{x+z}\)

Mà \(\frac{x}{x+y}>\frac{x}{x+y+z};\frac{y}{y+z}>\frac{y}{x+y+z};\frac{z}{x+z}>\frac{z}{x+y+z}\)

=>A > 1                                       (2)

Từ (1) và (2)=> 1 < A < 2 <=> A không phải là số nguyên

10 tháng 10 2021

Ta có: \(x+y=z\Rightarrow x=z-y\)

\(A=\sqrt{\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}}=\sqrt{\dfrac{x^2y^2+y^2z^2+x^2z^2}{x^2y^2z^2}}\)

\(=\sqrt{\dfrac{\left(z-y\right)^2y^2+y^2z^2+\left(z-y\right)^2z^2}{x^2y^2z^2}}\)

\(=\sqrt{\dfrac{y^4+y^2z^2-2y^3z+y^2z^2+z^4+y^2z^2-2yz^3}{x^2y^2z^2}}\)

\(=\sqrt{\dfrac{\left(y^4+2y^2z^2+z^4\right)-2yz\left(y^2+z^2\right)+y^2z^2}{x^2y^2z^2}}\)

\(=\sqrt{\dfrac{\left(y^2+z^2\right)^2-2yz\left(y^2+z^2\right)+y^2z^2}{x^2y^2z^2}}\)

\(=\sqrt{\dfrac{\left(y^2+z^2-yz\right)^2}{x^2y^2z^2}}=\left|\dfrac{y^2+z^2-yz}{xyz}\right|\)

Là một số hữu tỉ do x,y,z là số hữu tỉ

12 tháng 3 2015

+) Với các số nguyên dương x, y,z ta có \(\frac{x}{x+y}>\frac{x}{x+y+z}\)

                                                          \(\frac{y}{y+z}>\frac{y}{x+y+z}\) 

                                                           \(\frac{z}{z+x}>\frac{z}{x+y+z}\) 

Cộng từng vế của các bđt trên ta được \(\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}>\frac{x}{x+y+z}+\frac{y}{x+y+z}+\frac{z}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)(*)

+) ta dễ dàng chứng minh được điều sau: Cho x,y, z dương. Nếu \(\frac{x}{y}

20 tháng 6 2016

\(\rightarrow\)Ta có: \(\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}>\frac{x}{x+y+z}+\frac{y}{x+y+z}+\frac{z}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)

                                           \(\Rightarrow\) \(1< \frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}\)

\(\rightarrow\)Tương tự như trên, ta có đẳng thức: \(\frac{y}{x+y}+\frac{z}{y+z}+\frac{x}{z+x}>\frac{y}{x+y+z}+\frac{z}{y+z+x}+\frac{x}{z+x+y}=\frac{y+z+x}{y+z+x}=1\)

Mà \(\left(\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}\right)+\left(\frac{y}{x+y}+\frac{z}{y+z}+\frac{x}{z+x}\right)=3\)

Kết hợp các Bất đẳng thức trên, ta có điều phải chứng minh.

21 tháng 2 2021

Ta có:

 x/x+y + y/y+z + z/z+x = 1+ y+ 1+z+ 1+x= 3+x+y+z

 Do, x,y,z là các số nguyên dương nên 3+x+y+z> 3 >1

12 tháng 3 2021

\(\dfrac{x}{x^2+yz}+\dfrac{y}{y^2+zx}+\dfrac{z}{z^2+xy}\le\dfrac{x}{2\sqrt{x^2yz}}+\dfrac{y}{2\sqrt{y^2zx}}+\dfrac{z}{2\sqrt{z^2xy}}=\dfrac{1}{2}\left(\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{zx}}+\dfrac{1}{\sqrt{xy}}\right)\le\dfrac{1}{2}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=\dfrac{3}{2}\).

Đẳng thức xảy ra khi x = y = z = 1.

20 tháng 3 2021

sau 12(1√yz+1√zx+1√xy)≤12(1x+1y+1z)=3/2 vậy ạ

Với x, y, z nguyên dương 

Ta có: \(\frac{x}{x+y}>\frac{x}{x+y+z}\)

          \(\frac{y}{y+z}>\frac{y}{x+y+z}\)

          \(\frac{z}{z+x}>\frac{z}{x+y+z}\)

\(\Rightarrow\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}>\frac{x+y+z}{x+y+z}=1\)(1)

Mặt khác \(\frac{x}{x+y}< 1\Rightarrow\frac{x}{x+y}< \frac{x+z}{x+y+z}\)

           \(\frac{y}{y+z}< \frac{y+x}{x+y+z}\)

           \(\frac{z}{z+x}< \frac{z+y}{x+y+z}\)

\(\Rightarrow\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}< 2\)(2)

Từ (1) và (2) => dpcm

14 tháng 1 2018

Có : x/x+y ; y/y+z ; z/z+x đều > 0

=> x/z+y + y/y+z + z/z+x > x/x+y+z + y/x+y+z + z/x+y+z = x+y+z/x+y+z = 1 (1)

Lại có : x,y,z > 0

=> 0 < x/x+y ; y/y+z ; z/z+x < 1

=> x/x+y + y/y+z + z/z+x < x+z/x+y+z + y+x/x+y+z + z+y/x+y+z = x+z+y+x+z+y/x+y+z = 2 (2)

Từ (1) và (2) => ĐPCM

Tk mk nha

1 tháng 10 2016

Áp dụng t/c dãy tỉ số bằng nhau, ta có:

\(\frac{2x+y+2z}{x+y+3z}=\frac{2x+2y+z}{3x+y+z}=\frac{x+2y+2z}{x+3y+z}=\frac{2x+y+2z+2x+2y+z+x+2y+2z}{x+y+3z+3x+y+z+x+3y+z}=\frac{5x+5y+5z}{5x+5y+5z}=1\)

Vậy x=y=z

1 tháng 10 2016

Nhấn Ctrl - để xem dễ hơn nha!