K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2021

\(\Leftrightarrow x\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2020.2021}\right)=-1\)

\(\Leftrightarrow x\left(\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{2021-2020}{2020.2021}\right)=-1\)

\(\Leftrightarrow x\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2020}-\frac{1}{2021}\right)=-1\)

\(\Leftrightarrow x\left(1-\frac{1}{2021}\right)=-1\Leftrightarrow x.\frac{2020}{2021}=-1\Rightarrow x=-\frac{2021}{2020}\)

Nguồn: Tính tổng: 1x2 + 2x3 + 3x4 +...+ 2019x2020 + 2020x2021 - Hoc24
Đặt A=1.2+2.3+3.4+.........+2019.2020+2020.2021

⇒3A=1.2.3+2.3.3+3.4.3+.....+2019.2020.3+2020.2021.3

=1.2.3+2.3.(4−1)+3.4.(5−2)+.....+2020.2021.(2022−2019)

=1.2.3+2.3.4−1.2.3+3.4.5−2.3.4+...+2020.2021.2022−2019.2020.2021

=2020.2021.2022

cho mik hoi ket qua la bao nhieu

18 tháng 10 2020

Đặt A = 1.2 + 2.3 + 3.4 + ... + 2019.2020 + 2020.2021

=> 3A = 1.2.3 + 2.3.3 + 3.4.3 + ... + 2019.2020.3 + 2020.2021.3

=> 3A = 1.2.3 + 2.3.(4 - 1) + 3.4.(5 - 2) + ... + 2019.2020.(2021 - 2018) + 2020.2021.(2022 - 2019)

=> 3A = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + 2019.2020.2021 - 2018.2019.2020 + 2020.2021.2022 - 2019.2020.2021

=> 3A = 2020.2021.2022

=> A = 2 751 551 080

18 tháng 10 2020

Đặt \(A=1.2+2.3+3.4+.........+2019.2020+2020.2021\)

\(\Rightarrow3A=1.2.3+2.3.3+3.4.3+.....+2019.2020.3+2020.2021.3\)

\(=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+.....+2020.2021.\left(2022-2019\right)\)

\(=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+2020.2021.2022-2019.2020.2021\)

\(=2020.2021.2022\)

\(\Rightarrow A=\frac{2020.2021.2022}{3}\)

23 tháng 8 2020

Bài làm:

Ta có: \(\frac{x}{1.2}+\frac{x}{2.3}+\frac{x}{3.4}+...+\frac{x}{2017.2018}=-1\)

\(\Leftrightarrow x\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2017.2018}\right)=-1\)

\(\Leftrightarrow x\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017}-\frac{1}{2018}\right)=-1\)

\(\Leftrightarrow x\left(1-\frac{1}{2018}\right)=-1\)

\(\Leftrightarrow x.\frac{2017}{2018}=-1\)

\(\Rightarrow x=-\frac{2018}{2017}\)

19 tháng 8 2020

TÍNH BẰNG CÁCH NHANH NHẤT NHA CÁC BN 

19 tháng 8 2020

a) \(\left(\frac{1}{3}+\frac{1}{5}\right)+\left(\frac{1}{6}-\frac{1}{5}\right)=\left(\frac{1}{3}+\frac{1}{6}\right)+\left(\frac{1}{5}-\frac{1}{5}\right)=\frac{1}{2}\)

b) \(\frac{3}{16}\times\frac{7}{5}+\frac{3}{5}\times\frac{9}{16}=\frac{21}{80}+\frac{27}{80}=\frac{48}{80}=\frac{3}{5}\)

c) \(\frac{1}{1\times2}+\frac{1}{2\times3}+...+\frac{1}{2020\times2021}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2020}-\frac{1}{2021}\)

\(=1-\frac{1}{2021}=\frac{2020}{2021}\)

d) \(\frac{1}{1\times3}+\frac{1}{3\times5}+...+\frac{1}{2021\times2023}=\frac{1}{2}\times\left(\frac{2}{1\times3}+\frac{2}{3\times5}+...+\frac{2}{2021\times2023}\right)\)

\(=\frac{1}{2}\times\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2021}-\frac{1}{2023}\right)\)

\(=\frac{1}{2}\times\left(1-\frac{1}{2023}\right)=\frac{1}{2}\times\frac{2022}{2023}=\frac{1011}{2023}\)

e) \(\frac{3}{2}\times\frac{1}{7}\times\frac{5}{4}+\frac{15}{2}\times\frac{6}{7}\times\frac{1}{4}==\frac{15}{56}+\frac{80}{56}=\frac{95}{56}\)

11 tháng 5 2021

S= 2x(1/1x2+1/2x3+1/3x4+...........+1/2020x2021)

S=2x(1-1/2+1/2-1/3+1/3-...+1/2020-1/2021)

S=2x(1-1/2021)

S=2x2020/2021

S=4040/2021

2019/2010<3/2<4040/2021

=>2019/2010<S

11 tháng 5 2021

S = 2 x (\(\frac{2}{1\times2}+\frac{2}{2\times3}+\frac{2}{3\times4}+...+\)\(\frac{2}{2020\times2021}\))

= 2 x (\(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\)\(\frac{1}{2020\times2021}\)

= 2 x ( \(1-\frac{1}{2021}\))

\(2\times\frac{2020}{2021}\)

\(\frac{4040}{2021}\)

\(\frac{4042-2}{2021}\)

\(=2-\frac{2}{2021}\)

Ta có :

\(\frac{2019}{2010}=\frac{2020-1}{2010}=2-\frac{1}{2010}=2-\frac{2}{2020}\)

Ta thấy \(\frac{2}{2021}< \frac{2}{2020}\)

nên \(2-\frac{2}{2021}>2-\frac{2}{2020}\)

Vậy \(S\)\(>\frac{2019}{2010}\)

AH
Akai Haruma
Giáo viên
8 tháng 10 2023

Đề đã đầy đủ chưa bạn? Và bạn đang cần làm gì với biểu thức này? 

9 tháng 10 2023

tih bieu thuc ma

 

27 tháng 3 2016

9 nha ban

duyet nha

25 tháng 7 2015

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{x\left(x+1\right)}=\frac{99}{100}\)

\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{x}-\frac{1}{x+1}=\frac{99}{100}\)

\(1-\frac{1}{x+1}=\frac{99}{100}\)

=> \(\frac{1}{x+1}=1-\frac{99}{100}=\frac{1}{100}\)

=> x+1 = 100

=> x = 100 - 1 

=> x = 99

25 tháng 7 2015

mơ đi Nguyễn Đình Dũng

DD
25 tháng 5 2021

b) \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2013.2015}\)

\(=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2013.2015}\right)\)

\(=\frac{1}{2}\left(\frac{3-1}{1.3}+\frac{5-3}{3.5}+\frac{7-5}{5.7}+...+\frac{2015-2013}{2013.2015}\right)\)

\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2013}-\frac{1}{2015}\right)\)

\(=\frac{1}{2}\left(1-\frac{1}{2015}\right)=\frac{1007}{2015}\)

Phương trình tương đương với: 

\(\frac{1007X}{2015}=\frac{4}{2015}\Leftrightarrow X=\frac{4}{1007}\)

DD
25 tháng 5 2021

c) \(\frac{x+1}{2015}+\frac{x+2}{2016}=\frac{x+3}{2017}+\frac{x+4}{2018}\)

\(\Leftrightarrow\frac{x+1}{2015}-1+\frac{x+2}{2016}-1=\frac{x+3}{2017}-1+\frac{x+4}{2018}-1\)

\(\Leftrightarrow\frac{x-2014}{2015}+\frac{x-2014}{2016}=\frac{x-2014}{2017}+\frac{x-2014}{2018}\)

\(\Leftrightarrow x-2014=0\)

\(\Leftrightarrow x=2014\)