K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 1 2017

Ủa bài này cứ chuyển vế rồi. Quy đồng rút gọn chứ có khó gì đâu ta

30 tháng 9 2019

cái này dễ mà

30 tháng 9 2019

kiến thức trong sách í

3 tháng 8 2016

Ta có a = bk

c = dk

=> \(\frac{4a+9b}{7a-6b}\)=\(\frac{4bk+9b}{7bk-6b}\)=\(\frac{b.\left(4k+9\right)}{b.\left(7k-6\right)}\)=\(\frac{4k+9}{7k-6}\)

\(\frac{4c+9d}{7c-6d}\)=\(\frac{4dk+9d}{7dk-6d}\)=\(\frac{d.\left(4k+9\right)}{d.\left(7k-6\right)}\)=\(\frac{4k+9}{7k-6}\)

=> \(\frac{4a+9b}{7a-6b}\)=\(\frac{4c+9d}{7c-6d}\)

24 tháng 9 2017

dat a/b=c/d=k(k#0)

  1. suy ra a=bk(1)
  2. c=dk(2)
  3. thay(1)(2)vao bieu thuc a ta dc

4bk+9b/7bk-6b=4dk+9d/7dk-6d

b.(4k+9)/b.(7k-6)=d.(4k+9)/d.(7k-6)

b/b=d/d

cau b lam tuong tu y het nhu vay

8 tháng 8 2016

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

\(\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)\(\Rightarrow\frac{bk}{bk+b}=\frac{dk}{dk+d}\)

Xét VT \(\frac{bk}{bk+b}=\frac{bk}{b\left(k+1\right)}=\frac{k}{k+1}\left(1\right)\)

Xét VP \(\frac{dk}{dk+d}=\frac{dk}{d\left(k+1\right)}=\frac{k}{k+1}\left(2\right)\)

Từ (1) và (2) ta có VT=VP -->Đpcm

b)Tiếp tục đặt như phần a ta xét VT:

\(\frac{4bk+9b}{7bk-6b}=\frac{b\left(4k+9\right)}{b\left(7k-6\right)}=\frac{4k+9}{7k-6}\left(1\right)\)

Xét VP \(\frac{4dk+9d}{7dk-6d}=\frac{d\left(4k+9\right)}{d\left(7k-6\right)}=\frac{4k+9}{7k-6}\left(2\right)\)

Từ (1) và (2) ta có :VT=VP -->Đpcm

8 tháng 8 2016

Đặt k rồi thay vào từng cái một là ra

8 tháng 11 2018

a) \(\frac{a}{b}=\frac{c}{d}=\frac{11a}{11b}=\frac{9c}{9d}\)

áp dụng t/c dãy tỉ số bằng nhau ta có:

\(\frac{a}{b}=\frac{c}{d}=\frac{11a+9c}{11b+9d}\)

\(\Rightarrow\frac{a}{b}=\frac{11a+9c}{11c+9d}\left(đpcm\right)\)

b) \(\frac{a}{b}=\frac{c}{d}=\frac{3a}{3b}=\frac{5c}{5d}\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{3a^2}{3b^2}=\frac{5c^2}{5d^2}\)

áp dụng t/c dãy tỉ số bằng nhau ta có:

\(\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{3a^2+5c^2}{3b^2+5d^2}\left(1\right)\)

\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)

\(\Rightarrow\frac{a^2}{b^2}=\frac{\left(a+c\right)^2}{\left(b+d\right)^2}\left(2\right)\)

từ (1) và (2) => \(\frac{3a^2+5c^2}{3b^2+5d^2}=\frac{\left(a+c\right)^2}{\left(b+d\right)^2}\left(đpcm\right)\)

17 tháng 6 2016

a) Ta có:

\(\frac{a}{b}=\frac{11a}{11b}\) và \(\frac{c}{d}=\frac{9c}{9d}\)

Mà \(\frac{a}{b}=\frac{c}{d}\) nên suy ra \(\frac{a}{b}=\frac{11a}{11b}=\frac{9c}{9d}\)

=> \(\frac{a}{b}=\frac{11a+9c}{11b+9d}\)

17 tháng 6 2016

\(\text{a) Ta có: }\)

\(\frac{a}{b}=\frac{11a}{11b}\)\(\text{và }\)\(\frac{c}{d}=\frac{9c}{9d}\)

\(\text{Ma dau bai cho}\) \(\frac{a}{b}=\frac{c}{d}\) \(\Rightarrow\)\(\frac{a}{b}=\frac{11a}{11b}=\frac{9c}{9d}\)

\(\text{Vay }\)\(\frac{a}{b}=\frac{11a+9c}{11b+9d}\)

21 tháng 2 2023

mn giúp mình đigianroi

a: \(=11+\dfrac{3}{13}-2-\dfrac{4}{7}-5-\dfrac{3}{13}=4-\dfrac{4}{7}=\dfrac{24}{7}\)

b: \(=\dfrac{11}{2}\cdot\dfrac{15}{4}=\dfrac{165}{8}\)

c: \(=10+\dfrac{2}{9}+2+\dfrac{3}{5}-6-\dfrac{2}{9}=6+\dfrac{3}{5}=\dfrac{33}{5}\)

d: \(=6+\dfrac{4}{9}+3+\dfrac{7}{11}-4-\dfrac{4}{9}=5+\dfrac{7}{11}=\dfrac{62}{11}\)