K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 1 2017

Pt <=> y^3 =3x + x^3 

Vì 3x^2 + 1 > 0 mọi x nên ta có: 

(X^3 +3x ) - (3x^2 + 1) < x^3 + 3x < x^3 + 3x + (3x^2 + 1) 

<=> (x-1)^3 < y^3 < (x + 1)^3 

=> y^3 =x^3 

Pt <=>x^3 =x^3 + 3x 

<=> x = 0 

=> y= 0 Vậy ngiệm của pt là (0,0)

28 tháng 1 2018

bạn ơi đề khó nhìn vậy  

28 tháng 1 2018
bạn giúp mk vs đk k bạn
12 tháng 3 2021

Ta có \(x^6< x^6+3x^2+1< x^6+6x^4+12x^2+8=\left(x^2+2\right)^3\).

Theo nguyên lí kẹp ta có \(x^6+3x^2+1=\left(x^2+1\right)^3\Leftrightarrow x^4=0\Leftrightarrow x=0\).

Khi đó y = 1.

Vậy...

31 tháng 10 2017

bạn ghi lại rõ hơn 

2xy=3(x+y)+1

2xy=3x+3y+1

=>2xy-3x-3y=1=>2xy-3y=3x+1=>(2x-3)y=3x+1. Vì x nguyên nên 2x-3 khác 0.

=>y=(3x+1)/(2x-3). 

Để y nguyên thì 2y cũng nguyên=>2y=(6x+2)/(2x-3)=>(6x-9+11)/(2x-3)=3+11/(2x-3).

Để 2y nguyên thì 2x-3 là ước của 11.

Nếu 2x-3=11 thì x=7, y=2.(chọn)

Nếu 2x-3=1 thì x=2, y=7.(chọn)

Nếu 2x-3=-1 thì x=1, y=-5(loại vì y nguyên dương)

Nếu 2x-3=-11 thì x=-4, y=1(loại vì x nguyên dương)

Vậy (x,y)=(2,7) và (7,2).

27 tháng 2 2021
Vlsxw ws wz2xwxw w
AH
Akai Haruma
Giáo viên
23 tháng 2 2022

Lời giải:

Vì $x^3-7$ nguyên nên $3^y$ nguyên kéo theo $y$ là số nguyên không âm.

Một số lập phương khi chia cho $9$ dư $0,1,8$

$\Rightarrow x^3\equiv 0,1,8\pmod 9$

$\Rightarrow 3^y=x^3-7\equiv -7, -6, 1\pmod 9$

Nếu $y\geq 2$ thì điều này không thỏa mãn nên $y=0,1$

Thay $y=0$ thì $x=2$

Thay $y=1$ thì $x=\sqrt[3]{10}$ (loại)

27 tháng 5 2023

loading...

28 tháng 5 2023

Đenta tính sai rồi bạn ạk