cho 6 số nguyên dương a<b<c<d<m<n. Chứng minh: \(\frac{a+c+m}{a+b+c+d+m+n}<\frac{1}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a; Đặt A= \(a^{2017}+a^{2015}+1\)
\(=a^4\left(a^{2013}-1\right)+a^2\left(a^{2013}-1\right)+a^4+a^2+1\)=\(a^4\left(\left(a^3\right)^{671}-1\right)+a^2\left(\left(a^3\right)^{671}-1\right)+\left(a^2+a+1\right)\left(a^2-a+1\right)\)
= \(\left(a^2+a+1\right)F\left(a\right)\) (trong đó F(a) là đa thức chứa a)
\(\Rightarrow A\) chia hết cho \(a^2+a+1\)
do \(a^2+a+1\) > 1 (dễ cm đc)
mà A là số nguyên tố
\(\Rightarrow A=a^2+a+1\)
hay \(a^{2017}+a^{2015}+1=a^2+a+1\)
\(\Leftrightarrow a\left(a\left(a^{2015}-1\right)+\left(a^{2014}-1\right)\right)=0\)
\(\Leftrightarrow a\left(a-1\right).G\left(a\right)=0\) ( bạn đặt nhân tử chung ra)
do a dương => a>0 => a-1=0=> a=1(t/m)
Kết Luận:...
chỗ nào bạn chưa hiểu cứ nói cho mình nha :3
1) tính :
a) 5.17=85
b) (-15).(-6)=90
2) cho a là một số nguyên dương . hỏi b là số nguyên dương hay số nguyên âm nếu :
a) tích a.b là một số nguyên dương =>b là số nguyên dương
b) tích a.b là một số nguyên âm => b là số nguyên âm
a) a là một số nguyên dương. Tích a . b là một số nguyên dương
Suy ra b là một số nguyên dương
b) a là một số nguyên dương. Tích a . b là một số nguyên âm
Suy ra b là một số nguyên âm
Ta có: \(b+2019=\left(b+3\right)+2016\)(*)
Mà \(2016⋮6\)kết hợp với \(\left(^∗\right)⋮6\Rightarrow b+3⋮6\)
Lại có: a + 1 chia hết cho 6 nên \(\left(a+1\right)+\left(b+3\right)⋮6\)
\(\Rightarrow a+b+4⋮6\)
\(\Rightarrow a+b+4^a+\left(4-4^a\right)⋮6\)(1)
Xét a + 1 chia hết cho 6 nên a chia 6 dư 5.Đặt a = 6k + 5
\(\Rightarrow4-4^a=4-4^{6k+5}=4\left(1-4^{6k+4}\right)\)
Ta có:\(4\left(1-4^{6k+4}\right)⋮2\)
Mặt khác: \(1\text{≡}4\left(mod3\right)\)và \(4^{6k+4}\text{≡}4\left(mod3\right)\)
\(\Rightarrow\left(1-4^{6k+4}\right)⋮3\)
Lúc đó \(4\left(1-4^{6k+4}\right)⋮6\)(vì (2,3)=1) (2)
Từ (1) và (2) suy ra \(a+b+4^a⋮6\left(đpcm\right)\)
Vì a + 1 và b + 2009 chia hết cho 6 nên a + b + 2010 chia hết cho 6.
Mà 2010 chia hết cho 6 nên a + b chia hết cho 6.
4a không chia hết cho 6 nên 4a + a + b không chia hết cho 6.
Bạn xem lại đề.
Do a<b<c<d<m<n
=>a+c+m<b+d+n
=>2(a+c+m)<a+b+c+d+m+n
=>\(\frac{2\left(a+c+m\right)}{a+b+c+d+m+n}<1\Rightarrow\frac{a+c+m}{a+b+c+d+m+n}<\frac{1}{2}\)
a<b=>2a<a+b
c<d=>2c<c+d
m<n=>2m<m+n
=>2(a+c+m)<a+b+c+d+m+n
=>\(\frac{2\left(a+c+m\right)}{a+b+c+d+m+n}<\frac{a+b+c+d+m+n}{a+b+c+d+m+n}=1\)
<=>\(\frac{a+c+m}{a+b+c+d+m+n}<\frac{1}{2}\)(đpcm)