K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
29 tháng 12 2023

Lời giải:

$a^2-2ab-3b^2\geq 0$

$\Leftrightarrow (a^2+ab)-(3ab+3b^2)\geq 0$

$\Leftrightarrow a(a+b)-3b(a+b)\geq 0$

$\Leftrightarrow (a+b)(a-3b)\geq 0$

$\Leftrightarrow a-3b\geq 0$ (do $a+b>0$ với mọi $a,b>0$)

$\Leftrightarrow a\geq 3b$

Xét hiệu:

$P-\frac{37}{3}=\frac{4a^2+b^2}{ab}-\frac{37}{3}$

$=\frac{12a^2+3b^2-37ab}{3ab}=\frac{(a-3b)(12a-b)}{3ab}\geq 0$ do $a\geq 3b>0$

$\Rightarrow P\geq \frac{37}{3}$

Vậy $P_{\min}=\frac{37}{3}$

26 tháng 11 2018

Chọn đáp án D

Ta có

Suy ra

Từ giả thiết ta có f ' x + f ' ' x = 10 e x  

 

Để phương trình  f ' x + f ' ' x = 10 e x có nghiệm

⇔  Phương trình (*) có nghiệm

 

* Nếu b = 0 thì S = a 2 ≥ 10  

* Nếu b ≠ 0 thì S = a 2 - 2 a b + 3 b 2 ≥ 10 . a b 2 - 2 . a b + 3 a b 2 + 1 .

Đặt t = a b t ∈ R , suy ra S ≥ 10 . t 2 - 2 t + 3 t 2 + 1 .

Xét hàm số f t = t 2 - 2 t + 3 t 2 + 1  trên R.

Ta có

Bảng biến thiên:

Quan sát bảng biến thiên ta thấy  f t ≥ 2 - 2

26 tháng 4 2020

ai giúp mk vs

17 tháng 8 2020

a) Áp dụng Cauchy Schwars ta có:

\(M=\frac{a^2}{a+1}+\frac{b^2}{b+1}+\frac{c^2}{c+1}\ge\frac{\left(a+b+c\right)^2}{a+b+c+3}=\frac{9}{6}=\frac{3}{2}\)

Dấu "=" xảy ra khi: a = b = c = 1

17 tháng 8 2020

b) \(N=\frac{1}{a}+\frac{4}{b+1}+\frac{9}{c+2}\ge\frac{\left(1+2+3\right)^2}{a+b+c+3}=\frac{36}{6}=6\)

Dấu "=" xảy ra khi: x=y=1

4 tháng 9 2021

\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}\)

\(\Rightarrow\dfrac{a^2}{4}=\dfrac{b^2}{9}=\dfrac{c^2}{16}=\dfrac{3b^2}{27}=\dfrac{2c^2}{32}=\dfrac{a^2+3b^2-2c^2}{4+27-32}=\dfrac{-16}{-1}=16\)

\(\Rightarrow\left\{{}\begin{matrix}a^2=64\\b^2=144\\c^2=256\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}a=\pm8\\b=\pm12\\c=\pm16\end{matrix}\right.\)

Vậy \(\left(a;b;c\right)\in\left\{\left(8;12;16\right),\left(-8;-12;-16\right)\right\}\)

Cách khác:

Đặt \(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}=k\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=2k\\b=3k\\c=4k\end{matrix}\right.\)

Ta có: \(a^2+3b^2-2c^2=-16\)

\(\Leftrightarrow4k^2+27k^2-32k^2=-16\)

\(\Leftrightarrow k^2=16\)

Trường hợp 1: k=4

\(\Leftrightarrow\left\{{}\begin{matrix}a=2k=8\\b=3k=12\\c=4k=16\end{matrix}\right.\)

Trường hợp 2: k=-4

\(\Leftrightarrow\left\{{}\begin{matrix}a=2k=-8\\b=3k=-12\\c=4k=-16\end{matrix}\right.\)