K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1 .

a) Gọi d \(\in\)ƯC ( n + 1 , 2n + 3 ) . Ta có :

2n + 3 - 2( n + 1 ) \(⋮\)cho d

\(\Rightarrow\)1 chia hết cho d => d = + , - 1

b ) Gọi d \(\in\)ƯC ( 2n + 3 , 4n + 8 ) . Ta có :

4n + 8 - 2( 2n + 3 ) \(⋮\)cho d

\(\Rightarrow\)2 chia hết cho d . Do đó d là Ư của số lẻ 2n + 3 nên d = + , - 1

c ) Xét buểu thức 5( 3n + 2 ) - 3( 5n + 3 ).

28 tháng 1 2022

Gọi Ư(n+1;2n+3) = d ( \(d\in\)N*) 

\(n+1=2n+2\left(1\right);2n+3\left(2\right)\)

Lấy (2 ) - (1) ta được : \(2n+3-2n+2=1⋮d\Rightarrow d=1\)

Vậy ta có đpcm 

Gọi Ư\(\left(3n+2;5n+3\right)=d\)( d \(\in\)N*)

\(3n+2=15n+10\left(1\right);5n+3=15n+9\left(2\right)\)

Lấy (!) - (2) ta được : \(15n+10-15n-9=1⋮d\Rightarrow d=1\)

Vậy ta có đpcm 

28 tháng 1 2022

a) Gọi \(d\) là UCLN \(\left(n+1,2n+3\right)\left(d\in N\right)\)

Ta có : \(\left[{}\begin{matrix}n+1⋮d\\2n+3⋮d\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2n+2⋮d\\2n+3⋮d\end{matrix}\right.\)

\(\Rightarrow2n+3-\left(2n+2\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\left(đpcm\right)\)

b) Gọi \(d\) là \(UCLN\left(2n+3,4n+8\right)\left(d\in N\right)\)

Ta có : \(\left[{}\begin{matrix}2n+3⋮d\\4n+8⋮d\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}4n+6⋮d\\4n+8⋮d\end{matrix}\right.\)

\(\Rightarrow4n+8-\left(4n+6\right)⋮d\)

\(\Rightarrow2⋮d\)

\(\Rightarrow d\in\left\{1;2\right\}\)

Mà 2n+3 là số lẻ nên

\(\Rightarrow d=1\left(đpcm\right)\)

c) Gọi \(d\) là \(UCLN\left(3n+2;5n+3\right)\left(d\in N\right)\)

Ta có : \(\left[{}\begin{matrix}3n+2⋮d\\5n+3⋮d\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}15n+10⋮d\\15n+9⋮d\end{matrix}\right.\)

\(\Rightarrow15n+10-\left(15n+9\right)⋮d\)

\(\Rightarrow d=1\left(đpcm\right)\)

14 tháng 11 2017

a) ta chứng mk tử và mẫu là 2 số nguyên tố cùng nhau 

mk làm mẫu 1 câu nha

Gọi d là UCLN(n+1;2n+3)

=>n+1 \(⋮\)<=>2(n+1)\(⋮\)d<=>4n+2 chia hết cho d

=>4n+3 chia hết cho d

=> 4n+3-4n-2 chia hết cho d

<=> 1 chia hết cho d=> d= 1

d=1=>\(\frac{n+1}{2n+3}\)tối giản

14 tháng 11 2017

b) Gọi d là UCLN(2n+3;4n+8)

=>2n+3 \(⋮\)d<=>2(2n+3)\(⋮\)d<=> 4n+6 \(⋮\)d

=>4n+8\(⋮\)d

=>4n+8-4n-6\(⋮\)d<=>2 chia hết cho d=> d=1,2

mà 2n+3 là số lẻ nên ko có ước chẵn là 2=> d=1

vây \(\frac{2n+3}{4n+8}\)tối giản

26 tháng 1 2019

Tham khảo nha : 

       Chứng minh rằng 2 phân số tối giản vs mọi số tự nhiên n :       

...p/s

12 tháng 4 2023

Gọi Ư( n+1; 2 n+3 ) = d ( d∈N* )

n +1 = 2n + 2 (1) ; 2n+3*)   (2)

Lấy (2 ) - (1) ta được : 2n + 3 - 2n + 2 = 1:d => d =1

vậy ta có đpcm 

gọi Ư ( 3n + 2 ; 5n + 3 ) = d ( d∈N* )

3n +2 = 15 n + 10 (1)  ; 5n + 3 =15n + 9 (2)

lấy (!) - (2)  ta được  15n + 10 - 15n - 9 = 1:d => d = 1

Vậy ta có đpcm 

29 tháng 4 2017

\(\frac{n+1}{2n+3}\)

Gọi ƯCLN(n + 1, 2n + 3) là a

Ta có:

n + 1\(⋮\)a

\(\Rightarrow\)2(n + 1)\(⋮\)a

\(\Leftrightarrow\)2n + 2\(⋮\)a

2n + 3\(⋮\)a

\(\Rightarrow\)(2n + 3) - (2n + 2)\(⋮\)a

\(\Rightarrow\)1\(⋮\)a

\(\Rightarrow\)a = 1

29 tháng 4 2017

\(\frac{2n+1}{3n+2}\)

Gọi ƯCLN(2n + 1, 3n + 2) là b

Ta có:

2n + 1\(⋮\)b

\(\Rightarrow\)3.(2n + 1)\(⋮\)b

\(\Leftrightarrow\)6n + 3\(⋮\)b (1)

3n + 2\(⋮\)b

\(\Rightarrow\)2.(3n + 2)\(⋮\)b

\(\Leftrightarrow\)6n + 4\(⋮\)b (2)

Từ (1), (2) ta có:

(6n + 4) - (6n + 3)\(⋮\)b

\(\Leftrightarrow\)1\(⋮\)b

\(\Rightarrow\)b = 1

Vậy ƯCLN(2n + 1, 3n + 2) là 1

\(\Rightarrow\)Phân số tối giản

6 tháng 6 2020

a) *) \(\frac{n-1}{3-2n}\)

Gọi d là ƯCLN (n-1;3-2n) (d\(\inℕ\))

\(\Rightarrow\hept{\begin{cases}n-1⋮d\\3-2n⋮d\end{cases}\Rightarrow\hept{\begin{cases}2n-2⋮d\\3-2n⋮d\end{cases}\Leftrightarrow}\left(2n-2\right)+\left(3-2n\right)⋮d}\)

\(\Leftrightarrow1⋮d\left(d\inℕ\right)\Rightarrow d=1\)

=> ƯCLN (n-1;3-2n)=1

=> \(\frac{n-1}{3-2n}\)tối giản với n là số tự nhiên

*) \(\frac{3n+7}{5n+12}\)

Gọi d là ƯCLN (3n+7;5n+12) \(\left(d\inℕ\right)\)

\(\Rightarrow\hept{\begin{cases}3n+7⋮d\\5n+12⋮d\end{cases}\Rightarrow\hept{\begin{cases}15n+35⋮d\\15n+36⋮d\end{cases}\Leftrightarrow}\left(15n+36\right)-\left(15n+35\right)⋮d}\)

\(\Leftrightarrow1⋮d\left(d\inℕ\right)\)

\(\Rightarrow d=1\)

=> ƯCLN (3n+7;5n+12)=1

=> \(\frac{3n+7}{5n+12}\) tối giản với n là số tự nhiên

6 tháng 6 2020

b) *) \(\frac{2n+5}{n-1}\left(n\ne1\right)\)

\(=\frac{2\left(n-1\right)+7}{n-1}=2+\frac{7}{n-1}\)

Để \(\frac{2n+5}{n-1}\) nhận giá trị nguyên => \(2+\frac{7}{n-1}\) nhận giá trị nguyên

2 nguyên => \(\frac{7}{n-1}\)nguyên

=> 7 chia hết cho n-1

n nguyên => n-1 nguyên => n-1\(\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)

Ta có bảng

n-1-7-117
n-6028

vậy n={-6;0;2;8} thì \(\frac{2n+5}{n-1}\) nhận giá trị nguyên

17 tháng 7 2020

c) Gọi ƯCLN(4n + 3;5n+4) = d

=> \(\hept{\begin{cases}4n+3⋮d\\5n+4⋮d\end{cases}\Rightarrow\hept{\begin{cases}5\left(4n+3\right)⋮d\\4\left(5n+4\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}20n+15⋮d\\20n+16⋮d\end{cases}\Rightarrow}20n+16-\left(20n+15\right)⋮d\Rightarrow1⋮d}\)

=> d = 1

=> 4n + 3 ; 5n + 4 là 2 số nguyên tố cùng nhau 

=> \(\frac{4n+3}{5n+4}\)là phân số tối giản

d) Gọi ƯCLN(n+1;2n + 3) = d

=> \(\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(n+1\right)⋮d\\2n+3⋮d\end{cases}\Rightarrow}\hept{\begin{cases}2n+2⋮d\\2n+3⋮d\end{cases}\Rightarrow}2n+3-\left(2n+2\right)⋮d\Rightarrow1⋮d\Rightarrow d=1}\)

=> n + 1 ; 2n + 3 là 2 số nguyên tố cùng nhau

=> \(\frac{n+1}{2n+3}\)là phân số tối giản

f)  Gọi ƯCLN(3n + 2;5n + 3) = d

=> \(\hept{\begin{cases}3n+2⋮d\\5n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}5\left(3n+2\right)⋮d\\3\left(5n+3\right)⋮d\end{cases}\Rightarrow}\begin{cases}15n+10⋮d\\15n+9⋮d\end{cases}\Rightarrow15n+10-\left(15n+9\right)⋮d\Rightarrow1⋮d}\)

=> d = 1

=> 3n + 2 ; 5n + 3 là 2 số nguyên tố cùng nhau 

=> \(\frac{3n+2}{5n+3}\)là phân số tối giản

17 tháng 7 2020

a) Gọi ƯCLN(n + 3;n + 4) = d

=> \(\hept{\begin{cases}n+3⋮d\\n+4⋮d\end{cases}\Rightarrow n+4-\left(n+3\right)⋮d\Rightarrow1⋮d\Rightarrow d=1}\)

=> n + 3 ; n + 4 là 2 số nguyên tố cùng nhau

=> \(\frac{n+3}{n+4}\)là phân số tối giản

b) Gọi ƯCLN(3n + 3 ; 9n + 8) = d

Ta có : \(\hept{\begin{cases}3n+3⋮d\\9n+8⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(3n+3\right)⋮d\\9n+8⋮d\end{cases}}\Rightarrow\hept{\begin{cases}9n+9⋮d\\9n+8⋮d\end{cases}}\Rightarrow9n+9-\left(9n+8\right)⋮d\Rightarrow1⋮d\Rightarrow d=1}\)

=> 3n + 3 ; 9n + 8 là 2 số nguyên tố cùng nhau

=> \(\frac{3n+3}{9n+8}\)phân số tối giản