CHO TAM GIÁC ABC CÓ \(\widehat{B}\)> \(\widehat{C}\), BH,CK LÀ 2 ĐƯỜNG CAO. CM BH<CK
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C K K' H
Ta có: \(AC-AB>CK-BH\) (*)
\(\Leftrightarrow AC+BH>AB+CK\)
\(\Leftrightarrow\left(AC+BH\right)^2>\left(AB+CK\right)^2\)
\(\Leftrightarrow AC^2+BH^2+2.AC.BH>AB^2+CK^2+2.AB.CK\)
\(\Leftrightarrow AC^2+BH^2+4S_{ABC}>AB^2+CK^2+4S_{ABC}\)
\(\Leftrightarrow AC^2+BH^2>AB^2+CK^2\)
\(\Leftrightarrow AK>AH\) (**)
Xét tam giác ABC có \(\widehat{B}>\widehat{C}\Rightarrow AC>AB\)
Trên AC lấy điểm B' sao cho AB' = AB \(\Rightarrow AB'< AC\Rightarrow\) B' nằm giữa A và C. (1)
Kẻ B'K' vuông góc AB tại K'.Suy ra B'K' // KC (2)
Từ (1) và (2) suy ra K' nằm giữa A và K hay AK' < AK
Ta thấy ngay \(\Delta ABH=\Delta ACK'\) (Cạnh huyền - góc nhọn)
\(\Rightarrow AH=AK'\Rightarrow AK>AH\)
Vậy (**) đúng hay (*) đúng.
A B C K H
Ta có tam giác AKC vuông tại K
=> AC là cạnh lớn nhất (nhận xét quan hệ giữa cạnh đối diện với góc lớn hơn)
=>AC > CK
Ta có tam giác ABH vuông tại H
=> AB là cạnh lớn nhất (nhận xét quan hệ giữa cạnh đối diện với góc lớn hơn)
=> AB > BH
Có: AC>CK;
AB>BH (cmt)
=> AC-AB > CK-BH
SABC=\(\frac{AC.BH}{2}\)=\(\frac{AB.CK}{2}\)
=>AC.BH=AB.CK(1)
Vì tam giác ABC có Góc B>A=>Ac>AB(2)(góc vá cạnh đối diện)
Từ 1,2 =>BH<CK
làm câu a thôi nha
A B C H K
a) trên tia HB lấy HK sao cho HK = HC
xét tam giác ACH và tam giác AKH có :
AH ( cạnh chung )
\(\widehat{AHC}=\widehat{AHK}=90^o\)
HC = HK ( theo cách vẽ )
suy ra : tam giác ACH = tam giác AKH ( c.g.c )
=> HC = HK ( hai cạnh tương ứng )
=> \(\widehat{C}=\widehat{AKH}\)( hai góc tương ứng )
=> AC = AK ( hai cạnh tương ứng )
tam giác AKB có \(\widehat{AKH}\)là góc ngoài tại đỉnh K có :
\(\widehat{AKH}\)= \(\widehat{KAB}+\widehat{B}\)
Mà \(\widehat{C}=2.\widehat{B}\)hay \(\widehat{AKH}\)= \(2.\widehat{B}\)
\(\Rightarrow2.\widehat{B}=\widehat{KAB}+\widehat{B}\)
\(\Rightarrow\widehat{KAB}=\widehat{B}\)
=> tam giác KAB cân tại K
=> KA = KB
=> AC + CH = KB + HK = BH
b)
B A C H
Xét \(\Delta ABC\)có \(AH^2=BH.CH=25.64=1600\Rightarrow AH=40\left(cm\right)\)
\(AC^2=CH.BC=64.\left(64+25\right)=5696\Rightarrow AC=8\sqrt{89}\left(cm\right)\)
\(AB^2=BH.BC=25.89=2225\Rightarrow AB=5\sqrt{89}\left(cm\right)\)
Ta có \(\sin B=\frac{AC}{BC}=\frac{8\sqrt{89}}{89}\Rightarrow\widehat{B}\approx58^0\)\(\Rightarrow\widehat{C}=180^0-\widehat{A}-\widehat{B}=180^0-90^0-58^0=32^0\)
a: Xét ΔABH vuông tại H và ΔACK vuông tại K có
góc BAH chung
Do đó: ΔABH\(\sim\)ΔACK
b: Xét ΔAKH và ΔACB có
AK/AC=AH/AB
góc KAH chung
Do đó: ΔAKH\(\sim\)ΔACB
Suy ra: \(\widehat{AKH}=\widehat{ACB}=40^0\)