Cho x, y >0 và x+y+xy=1. Tìm min P=\(\frac{1}{x+y}\)+\(\frac{1}{x}\)+\(\frac{1}{y}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,A=\frac{1}{x^2+y^2}+\frac{1}{xy}=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}\)
\(\ge\frac{4}{\left(x+y^2\right)}+\frac{1}{\frac{\left(x+y\right)^2}{2}}\ge\frac{4}{1}+\frac{2}{1}=6\)
Dấu "=" <=> x= y = 1/2
\(2,A=\frac{x^2+y^2}{xy}=\frac{x}{y}+\frac{y}{x}=\left(\frac{x}{9y}+\frac{y}{x}\right)+\frac{8x}{9y}\ge2\sqrt{\frac{x}{9y}.\frac{y}{x}}+\frac{8.3y}{9y}\)
\(=2\sqrt{\frac{1}{9}}+\frac{8.3}{9}=\frac{10}{3}\)
Dấu "=" <=> x = 3y
Ta có: \(A=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\left(\frac{1}{2xy}+8xy\right)-4xy\ge\frac{\left(1+1\right)^2}{x^2+y^2+2xy}+2\sqrt{\frac{1}{2xy}.8xy}-\left(x+y\right)^2=4+4-1=7\)
Dấu "=" xảy ra khi và chỉ khi x = y = 0,5.
Thế 1=x+y+xy vào P ta có: \(P=\frac{1}{x+y}+\frac{x+y+xy}{x}+\frac{x+y+xy}{y}\)
\(P=\frac{1}{x+y}+x+y+\frac{x}{y}+\frac{y}{x}+2\ge2\sqrt{\frac{x+y}{x+y}}+2\sqrt{\frac{xy}{yx}}+2=6\)
Vậy Min P=6. Đạt được khi \(x=y=\sqrt{2}-1.\)
Câu hỏi của Nguyễn Phan Ngọc Tú - Toán lớp 9 - Học toán với OnlineMath
tham khỏa nè:
Câu hỏi của Nguyễn Phan Ngọc Tú - Toán lớp 9 - Học toán với OnlineMath
coppy của thắng
\(P=\frac{\sqrt{1+x^2+y^2}}{xy}+\frac{\sqrt{1+y^2+z^2}}{yz}+\frac{\sqrt{1+z^2+x^2}}{zx}\)
\(\ge\text{Σ}\frac{\sqrt{\frac{\left(1+x+y\right)^2}{3}}}{xy}\text{=}\frac{1+x+y}{xy\sqrt{3}}\)
\(=\frac{\sqrt{3}}{3}\left(\frac{1+x+y}{xy}+\frac{1+y+z}{yz}+\frac{1+z+x}{zx}\right)\)
\(=\frac{\sqrt{3}}{3}\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}+\frac{1}{x}+\frac{1}{y}+\frac{1}{y}+\frac{1}{z}+\frac{1}{z}+\frac{1}{x}\right)\)
\(=\frac{\sqrt{3}}{3}\left(x+y+z+2xy+2yz+2zx\right)\)\(\ge\frac{\sqrt{3}}{3}\left(3\sqrt[3]{xyz}+2\cdot3\sqrt[3]{x^2y^2z^2}\right)=\frac{\sqrt{3}}{3}\left(3+6\right)=3\sqrt{3}\)
Dấu = xảy ra khi \(x=y=z=1\)
Đặt \(x+y=a,xy=b,a^2\ge4b\).
Ta có \(1=a+b\le a+\frac{a^2}{4}\Rightarrow a\ge2\sqrt{2}-2\).
Ta lại có \(P=\frac{1}{a}+\frac{a}{b}=\frac{1}{a}+\frac{a}{1-a}\)
Ta sẽ CM \(P\ge k=\frac{5+5\sqrt{2}}{2}\)
Biến đổi tương đương được: \(\left(k+1\right)a^2-\left(k+1\right)a+1\ge0\) (đúng với \(a\ge2\sqrt{2}-2\))
Vậy min\(P=\frac{5+5\sqrt{2}}{2}\) (đẳng thức xảy ra khi \(x=y=\sqrt{2}-1\))