K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1. Cho tam giác ABC. Gọi M và N là các điểm trên các cạnh AB và AC sao choAM > BM và AN > CN. Chứng minh rằng:a) BC < BM + CN + MN.b) BC nhỏ hơn chu vi của tam giác AMN.Bài 2. Tính chu vi của tam giác cân ABC, biết:a) AB = 2cm, AC = 5cmb) AB = 16cm, AC = 8cm.Bài 3. Cho tam giác ABC, điểm M nằm trên tia phân giác ngoài của góc C (M khôngtrùng với C). Chứng minh MA + MB > CA + CB.Bài 4. Cho góc xOy nhọn. M là điểm thuộc miền...
Đọc tiếp

Bài 1. Cho tam giác ABC. Gọi M và N là các điểm trên các cạnh AB và AC sao cho
AM > BM và AN > CN. Chứng minh rằng:
a) BC < BM + CN + MN.
b) BC nhỏ hơn chu vi của tam giác AMN.

Bài 2. Tính chu vi của tam giác cân ABC, biết:
a) AB = 2cm, AC = 5cm
b) AB = 16cm, AC = 8cm.

Bài 3. Cho tam giác ABC, điểm M nằm trên tia phân giác ngoài của góc C (M không
trùng với C). Chứng minh MA + MB > CA + CB.

Bài 4. Cho góc xOy nhọn. M là điểm thuộc miền trong của góc. Hãy xác định điểm A
trên Ox, điểm B trên Oy sao cho chu vi tam giác MAB là nhỏ nhất (Gợi ý: Lấy E, F
sao cho Ox là trung trực của ME, Oy là trung trực của MF).

Bài 5. Cho tam giác ABC, điểm O nằm giữa B và C. Trên tia đối của tia OA lấy điểm
D. Gọi M, N lần lượt là trung điểm của AB, CD. Chứng minh

MN< hoặc = (AC+BD)/2

Bài 6. Cho góc xOy, vẽ Oz là tia phân giác của góc xOy. Từ điểm M ở trong góc xOz
vẽ MH vuông góc với Ox (H thuộc Ox), vẽ MK vuông góc với Oy (K thuộc Oy).
Chứng minh MH < MK.

0
22 tháng 6 2020

tự kẻ hình nha:333

a) vì AB là trung trực của DM=> MH=HD( đặt H là giao điểm của AB và DM)

xét tam giác MAB và tam giác  DAB có

MH=HD(cmt)

AHM=AHD(=90 độ)

AH chung

=> tam giác MAB= tam giác DAB(cgc)

=> AM=AD( hai cạnh tương ứng)

vì AC là trung trực của DN=> NK=DK( đặt K là giao điểm của AC và DN)

xét tam giác AKD và tam giác AKN có

DK=NK(cmt)

AKD=AKN(=90 độ)

AK chung

=> tam giác AKD= tam giác AKN( cgc)

=> AN=AD ( hai cạnh tương ứng)

AM=AD(cmt)

=> AM=AN=> tam giác AMN cân A

b) vì E thuộc đường trung trực AB=> EM=ED

vì F thuộc đường trung trực AC=> FD=FN

ta có MN=ME+EF+FN mà EM=ED, FD=FN

=> MN= ED+EF+FD

c) xét tam giác ADF và tam giác ANF có

FD=FN(cmt)

AD=AN(cmt)

AF chung

=> tam giác ADF= tam giác ANF(ccc)

=> ANF=ADF( hai góc tương ứng)

xét tam giác AME và tam giác ADE có

AM=AD(cmt)

AE chung

EM=ED(cmt)

=> tam giác AME= tam giác ADE(ccc)

=> AME=ADE( hai góc tương ứng)

mà AME=ANF( tam giác AMN cân A)

=> ADE=ADF=> AD là p/g của EDF

d) chưa nghĩ đc :)))))))

12 tháng 5 2021

CHUẨN R BN ƠI HỌC THÌ NGU MÀ CHƠI NGU THÌ GIỎI 

14 tháng 12 2017

Bạn xem lời giải chi tiết ở link dưới đây nhé (câu C)

Câu hỏi của Nguyễn Thị Thùy - Toán lớp 8 - Học toán với OnlineMath

Bài 1: Cho tam giác ABC cân (AB=AC), O là giao điểm 3 trung trực 2 cạnh của tam giác ABC (O nằm trong tam giác). Trên tia đối của các tia AB và CA ta lấy 2 điểm M, N sao cho AM=CN. Chứng minh:a) Góc OAB = góc OCAb) Tam giác AOM = tam giác CONc) Hai trung trực OM, ON cắt nhau tại I. Chứng minh OI là tia phân giác của góc MONBài 2: Cho góc nhọn xOy; trên tia Ox lấy 2 điểm A và B (A nằm giữa O, B). Trên Oy lấy 2 điểm C, D (C...
Đọc tiếp

Bài 1: Cho tam giác ABC cân (AB=AC), O là giao điểm 3 trung trực 2 cạnh của tam giác ABC (O nằm trong tam giác). Trên tia đối của các tia AB và CA ta lấy 2 điểm M, N sao cho AM=CN. Chứng minh:
a) Góc OAB = góc OCA
b) Tam giác AOM = tam giác CON
c) Hai trung trực OM, ON cắt nhau tại I. Chứng minh OI là tia phân giác của góc MON
Bài 2: Cho góc nhọn xOy; trên tia Ox lấy 2 điểm A và B (A nằm giữa O, B). Trên Oy lấy 2 điểm C, D (C nằm giữa O, D) sao cho OA=OC và OB=OD. Chứng minh:
a) Tam giác AOD = tam giác COB
b) Tam giác ABD = tam giác CDB
c) Gọi I là giao điểm của AD và BC. Chứng minh IA=IC; IB=ID
Bài 3: Cho tam giác ABC. Qua A kẻ đường thẳng song song với BC, qua C kẻ đường thẳng song song với AB, hai đường thẳng này cắt nhau tại D
a) Chứng minh: AD=BC và AB=DC
b) Gọi M, N lần lượt là trung điểm của BC và AD. Chứng minh: AM=CN
c) Gọi O là giao điểm của AC và BD. Chứng minh: OA=OC và OB=OD
d) Chứng minh: M, O, N thẳng hàng
Bài 4: Cho góc xOy = 60 độ. Vẽ Oz là tia phân giác của góc xOy 
a) Tính góc xOy?
b) Trên Ox lấy điểm A và trên Oy lấy điểm B sao cho OA=OB. Tia Oz cắt AB tại I. Chứng minh tam giác OIA = tam giác OIB
c) Chứng minh OI vuông góc AB
d) Trên tia Oz lấy điểm M. Chứng minh MA=MB
e) Qua M vẽ đường thẳng song song với AB cắt tia Ox, Oy lần lượt tại C và D. Chứng minh BD=AC

       Mọi ng giúp mình giải bài này nhé! Cảm ơn mn <3

7
31 tháng 5 2018

Mình nghĩ khó mà có người giải hết chỗ bài tập đấy của bạn, nhiều quá

31 tháng 5 2018

3/ (Bạn tự vẽ hình giùm)

a/ \(\Delta ABC\)và \(\Delta ADC\)có:

\(\widehat{BAC}=\widehat{ACD}\)(AB // DC; ở vị trí so le trong)

Cạnh AC chung

\(\widehat{CAD}=\widehat{ACB}\)(AB // DC; ở vị trí so le trong)

=> \(\Delta ABC\)\(\Delta ADC\)(g. c. g)

=> AD = BC (hai cạnh tương ứng)

và AB = DC (hai cạnh tương ứng)

b/ Ta có AD = BC (cm câu a)

và \(AN=\frac{1}{2}AD\)(N là trung điểm AD)

và \(MC=\frac{1}{2}BC\)(M là trung điểm BC)

=> AN = MC

Chứng minh tương tự, ta cũng có: BM = ND

\(\Delta AMB\)và \(\Delta CND\)có:

BM = ND (cmt)

\(\widehat{ABM}=\widehat{NDC}\)(AB // CD; ở vị trí so le trong)

AB = CD (\(\Delta ABC\)\(\Delta ADC\))

=> \(\Delta AMB\)\(\Delta CND\)(c. g. c)

=> \(\widehat{BAM}=\widehat{NCD}\)(hai góc tương ứng)

và \(\widehat{BAC}=\widehat{ACN}\)(\(\Delta ABC\)\(\Delta ADC\))

=> \(\widehat{BAC}-\widehat{BAM}=\widehat{ACN}-\widehat{NCD}\)

=> \(\widehat{MAC}=\widehat{ACN}\)(1)

Chứng minh tương tự, ta cũng có \(\widehat{AMC}=\widehat{ANC}\)(2)

và AN = MC (cmt) (3)

=> \(\Delta MAC=\Delta NAC\)(g, c. g)

=> AM = CN (hai cạnh tương ứng) (đpcm)

c/ \(\Delta AOB\)và \(\Delta COD\)có:

\(\widehat{BAO}=\widehat{OCD}\)(AB // DC; ở vị trí so le trong)

AB = CD (cm câu a)

\(\widehat{ABO}=\widehat{ODC}\)(AD // BC; ở vị trí so le trong)

=> \(\Delta AOB\)\(\Delta COD\)(g. c. g)

=> OA = OC (hai cạnh tương ứng)

và OB = OD (hai cạnh tương ứng)

d/ \(\Delta ONA\)và \(\Delta MOC\)có:

\(\widehat{AON}=\widehat{MOC}\)(đối đỉnh)

OA = OC (O là trung điểm AC)

\(\widehat{OAN}=\widehat{OCM}\)(AM // NC; ở vị trí so le trong)

=> \(\Delta ONA\)\(\Delta MOC\)(g. c. g)

=> ON = OM (hai cạnh tương ứng)

=> O là trung điểm MN

=> M, O, N thẳng hàng (đpcm)

a: Xet ΔANO vuông tại N và ΔBNF vuông tại N có

NA=NB

NO=NF

=>ΔANO=ΔBNF

=>AO=BF và góc NAO=góc NBF

=>AO//BF

b: Xét tứ giác AECO có

P là trung điểm chung của AC và EO

=>AECO là hình bình hành

=>AO//CE và AO=CE; OC//AE và OC=AE

=>FB//CE và FB=CE
Xét tú giác BOCD có

M là trung điểm chung của BC và OD

=>BOCD là hình bình hành

=>BD//OC và BD=OC; OB//DC và OB=DC

=>AE//BD và AE=BD; AF//CD và AF=CD

AE=BD=CO

CD=AF=BO

BF=CE=AO

mà BO=AO=CO

nên AE=BD=CD=AF=BF=CE
=>ĐPCM