a, Tìm các số có dạng 2x3y sao cho nó chia hết cho 5 và 9
b. cho số 37a8b. Hãy tìm các chữ số thay cho a b để được số chia hết cho 2; 5 và 9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
a)
Ta có: 87ab ⋮ 9 ⇔ (8 + 7 + a + b) ⁝⋮ 9 ⇔ (15 + a + b) ⋮ 9
Suy ra: (a + b) ∈ {3; 12}
Vì a – b = 4 nên a + b > 3. Suy ra a + b = 12
Thay a = 4 + b vào a + b = 12, ta có:
b + (4 + b) = 12 ⇔ 2b = 12 – 4
⇔ 2b = 8 ⇔ b = 4
a = 4 + b = 4 + 4 = 8
Vậy ta có số: 8784.
b)
⇒ (7+a+5+b+1) chia hết cho 3
⇔ (13+a+b) chia hết cho 3
+ Vì a, b là chữ số, mà a-b=4
⇒ a,b ∈ (9;5) (8;4) (7;3) (6;2) (5;1) (4;0).
Thay vào biểu thức 7a5b1, ta được :
ĐA 1: a=9; b=5.
ĐA 2: a=6; b=2.
Bài 2 :
Bn nhi nguyên làm sai r vì
*=5 thui còn 2 là sai.
Vìvì nếu *=2 thì 2+5+3+2=10
10 ko chia het cho 3 nên thay sao bằng 2 là sai.
MMà *=5
10uM10uiMM
M10uM10uiMMu
bài 11:
Gọi số phải tìm là: A = 567abc
Do A chia 5 dư 1 mà A lẻ nên c = 1
Tổng các chữ số của A là: 5 + 6 + 7 + a + b + 1 = a + b + 19
Để A chia 9 dư 1 thì a + b = 0 (loại)
a + b = 9
a + b = 18 (loại) (Có 2 chữ số bằng nhau 9 + 9)
Xét a + b = 9, a khác b và khác 5,6,7,1 ==> a = 9, b = 0 ==> A = 567901
==> a = 0, b = 9 ==> A = 567091
ĐS: 3 số phải thêm là: 901 hoặc 091
a, Số tự nhiên có dạng 20ab chia hết cho 2 , 5
=> 20ab phải có tận cùng là chữ số 0
=> b = 0
Mà 20a0 phải nhỏ nhất và chia hết cho 3
=> a = 1
Vậy số đó là 2010
b, 2x3y muốn chia hết cho 2,5 có tận cùng là 0
=> y = 0
Mà 2x30 phải chia hết cho 9
=> ( 2 + x + 3 + 0 ) chia hết cho 9
=> 5 + x chia hết cho 9
=> x = 4
=> tổng bằng 2430
Số bé là :
( 2430 - 1554 ) : 2 = 438
Số lớn là :
2430 - 438 = 1992
Vậy số bé là 438
Số lớn là 1992
Tk mk nha !!
cảm ơn !!
a ) để số đó chia hết cho 2 và 5 thì b=0
vậy ta có số 20a0 để chúng chia hết cho 3 thì
a=( 1;4;7 )
Vậy a =( 1;4;7 ) và b= 0
(a): \(\overline{2x3y}⋮5=>y=0;5\)
+) `y=0`, ta được số : \(\overline{2x30}\)
Xét tổng các chữ số của số trên :
`2+x+3+0=x+5`
Để \(\overline{2x30}⋮9\) thì : `x+5` phải chia hết cho `9`
Suy ra : `x=4`
Tương tự với `y=5` ta tìm được `x=8`
Vậy `x=4,y=0` ; `x=8,y=5`
Chia hết cho `2` và `5` thì chữ số tận cùng phải là : `0`
Do đó `b=0`
Ta được số : \(\overline{37a80}\)
Xét tổng chữ số của số trên :
`3+7+a+8+0=a+18`
Để \(\overline{37a80}\) chia hết cho `9` thì : `a+18` chia hết cho `9`
Suy ra : `a=0;9`
Vậy `a=0,b=0` ; `a=9,b=0`