Bài 1: Cho a, b, c > 0; abc = 1 và a + b + c > \(\frac{1}{a}\)+ \(\frac{1}{b}\)+ \(\frac{1}{c}\). Chứng minh:
a) (a - 1) (b - 1) (c - 1) > 0
b) Trong 3 số a, b, c có ít nhất 1 số lớn hơn 1 hoặc 2 số nhỏ hơn 1; số còn lại lớn hơn 1.
Bài 2: Cho x > 0. Tìm giá trị nhỏ nhất của M = x25 - 5x5 + 6
2) M = (x25 + 1 + 1 + 1 + 1) - 5x5 + 2
Áp dụng BĐT Cô - si cho 5 số dương x25; 1;1;1;1 ta có: x25 + 1 + 1 + 1 + 1 \(\ge\)5.\(\sqrt[5]{x^{25}.1.1.1.1}=x^5\) = 5x5
=> M \(\ge\) 5x5 - 5x5 + 2 = 2
Vậy M nhỏ nhất = 2 khi x25 = 1 => x = 1
\(ab=\frac{1}{c};c=\frac{1}{ab}\)
\(a+b+c-\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=a+b+\frac{1}{ab}-\frac{1}{a}-\frac{1}{b}-ab\)
\(=\left(a+b-ab-1\right)+\left(\frac{1}{ab}-\frac{1}{a}-\frac{1}{b}+1\right)\)
\(=-\left(a-1\right)\left(b-1\right)+\left(1-\frac{1}{a}\right)\left(1-\frac{1}{b}\right)\)
\(=-\left(a-1\right)\left(b-1\right)+\frac{\left(a-1\right)\left(b-1\right)}{ab}\)
\(=-\left(a-1\right)\left(b-1\right)+\left(a-1\right)\left(b-1\right)c\)
\(=\left(a-1\right)\left(b-1\right)\left(c-1\right)\)
Do biểu thức ban đầu dương nên ta có đpcm