Tính nhanh
\(C=-\dfrac{3}{11.14}-\dfrac{3}{14.17}-\dfrac{3}{17.20}-...-\dfrac{3}{98.101}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{15}{11.14}+\frac{15}{14.17}+\frac{15}{17.20}+...+\frac{15}{72.75}\)
\(=5\left(\frac{3}{11.14}+\frac{3}{14.17}+\frac{3}{17.20}+...+\frac{3}{72.75}\right)\)
\(=5\left(\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}+\frac{1}{17}-\frac{1}{20}+...+\frac{1}{72}-\frac{1}{75}\right)\)\(=5\left(\frac{1}{11}-\frac{1}{75}\right)\)
\(=\frac{64}{165}\)
\(\dfrac{15}{11.14}+\dfrac{15}{14.17}+\dfrac{15}{17.20}+...+\dfrac{15}{68.71}\)
\(=5\left(\dfrac{1}{11}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{17}+\dfrac{1}{17}-\dfrac{1}{20}+...+\dfrac{1}{68}-\dfrac{1}{71}\right)\)
\(=5\left(\dfrac{1}{11}-\dfrac{1}{71}\right)\)
\(=5.\dfrac{60}{781}\)
\(=\dfrac{300}{781}\)
\(\dfrac{3}{2\cdot5}+\dfrac{3}{5\cdot8}+\dfrac{3}{8\cdot11}+\dfrac{3}{11\cdot14}+\dfrac{3}{14\cdot17}\)
= \(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{17}\)
\(=\dfrac{1}{2}-\dfrac{1}{17}\)
\(=\dfrac{15}{34}\)
Vì \(\dfrac{15}{34}< \dfrac{1}{2}=>\dfrac{3}{2\cdot5}+\dfrac{3}{5\cdot8}+\dfrac{3}{8\cdot11}+\dfrac{3}{11\cdot14}+\dfrac{3}{14\cdot27}< \dfrac{1}{2}\)
\(\dfrac{3^2}{8.11}+\dfrac{3^2}{11.14}+...+\dfrac{3^2}{197.200}\)
=\(3.\left(\dfrac{3}{8.11}+\dfrac{3}{11.14}+...+\dfrac{3}{197.200}\right)\)
=\(3.\left(\dfrac{1}{8}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{14}+...+\dfrac{1}{197}-\dfrac{1}{200}\right)\)
=\(3.\left(\dfrac{1}{8}-\dfrac{1}{200}\right)\)
=\(3.\dfrac{3}{25}=\dfrac{9}{25}\)
theo bài ra ta có:
\(E=\dfrac{15}{11.14}+\dfrac{15}{14.17}+\dfrac{15}{17.20}+...+\dfrac{15}{74.77}\\ \Rightarrow\dfrac{1}{5}E=\dfrac{3}{11.14}+\dfrac{3}{14.17}+\dfrac{3}{17.20}+...+\dfrac{3}{74.77}\\ \dfrac{1}{5}E=\dfrac{1}{11}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{17}+\dfrac{1}{17}-\dfrac{1}{20}+...+\dfrac{1}{74}-\dfrac{1}{77}\\ \dfrac{1}{5}E=\dfrac{1}{11}-\dfrac{1}{77}\\ \dfrac{1}{5}E=\dfrac{7}{77}-\dfrac{1}{77}=\dfrac{6}{77}\\ \Rightarrow E=\dfrac{6}{77}.5\\ E=\dfrac{30}{77}\)
5 .\((\)\(\dfrac{3}{11.14}+\dfrac{3}{14.17}+...+\dfrac{3}{74.77}\))
= 5. (\(\dfrac{1}{11}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{17}+...+\dfrac{1}{74}-\dfrac{1}{77}\))
= 5.(\(\dfrac{1}{11}-\dfrac{1}{77}\))
= 5. \(\dfrac{6}{77}\)
= \(\dfrac{30}{77}\)
\(A=\dfrac{14}{8.11}+\dfrac{14}{11.14}+\dfrac{14}{14.17}+.....+\dfrac{14}{197.200}\)
\(A=\dfrac{14}{3}\left(\dfrac{1}{8}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{17}+...+\dfrac{1}{197}-\dfrac{1}{200}\right)\)
\(A=\dfrac{14}{3}.\left(\dfrac{1}{8}-\dfrac{1}{200}\right)\)
\(A=\dfrac{14}{3}.\dfrac{24}{200}=\dfrac{28}{25}\)
\(B=\dfrac{7}{15}+\dfrac{7}{35}+\dfrac{7}{63}+...+\dfrac{7}{399}\)
\(B=\dfrac{7}{3.5}+\dfrac{7}{5.7}+\dfrac{7}{7.9}+.....\dfrac{7}{19.21}\)
\(B=\dfrac{7}{2}\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+....+\dfrac{1}{19}-\dfrac{1}{21}\right)\)
\(B=\dfrac{7}{2}.\left(\dfrac{1}{3}-\dfrac{1}{21}\right)\)
\(B=\dfrac{7}{2}.\dfrac{6}{21}=1\)
D = \(\dfrac{3}{5.8}+\dfrac{3}{8.11}+\dfrac{3}{11.14}+...+\dfrac{3}{2006.2009}\)
= \(\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{14}+...+\dfrac{1}{2006}-\dfrac{1}{2009}\)
= \(\dfrac{1}{5}-\dfrac{1}{9}=\dfrac{2004}{10045}\)
C = \(\dfrac{10}{7.12}+\dfrac{10}{12.17}+\dfrac{10}{17.22}+...+\dfrac{10}{502.507}\)
= \(\dfrac{10}{5}\left(\dfrac{5}{7.12}+\dfrac{5}{12.17}+\dfrac{5}{17.22}+...+\dfrac{5}{502.507}\right)\)
= \(\dfrac{10}{5}\left(\dfrac{1}{7}-\dfrac{1}{12}+\dfrac{1}{12}-\dfrac{1}{17}+\dfrac{1}{17}-\dfrac{1}{22}+....+\dfrac{1}{502}-\dfrac{1}{507}\right)\)
= \(\dfrac{10}{5}\left(\dfrac{1}{5}-\dfrac{1}{507}\right)\)
= \(\dfrac{10}{5}.\dfrac{502}{2535}\)
= \(\dfrac{1000}{3549}\)
\(\dfrac{1}{5.8}+\dfrac{1}{8.11}+...+\dfrac{1}{y\left(y+3\right)}=\dfrac{98}{1545}\)
\(\Leftrightarrow\dfrac{3}{5.8}+\dfrac{3}{8.11}+...+\dfrac{3}{y\left(y+3\right)}=\dfrac{98}{515}\)
\(\Leftrightarrow\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{y}-\dfrac{1}{y+3}=\dfrac{98}{515}\)
\(\Leftrightarrow\dfrac{1}{5}-\dfrac{1}{y+3}=\dfrac{98}{515}\)
\(\Leftrightarrow\dfrac{y+3}{5\left(y+3\right)}-\dfrac{5}{5\left(y+3\right)}=\dfrac{98}{515}\)
\(\Leftrightarrow\dfrac{y+3-5}{5\left(y+3\right)}=\dfrac{98}{515}\)
\(\Leftrightarrow\dfrac{y-2}{5\left(y+3\right)}=\dfrac{98}{515}\)
\(\Leftrightarrow515\left(y-2\right)=98.5\left(y+3\right)\)
\(\Leftrightarrow515y-1030=490y+1470\)
\(\Leftrightarrow25y-2500=0\\ \Leftrightarrow25y=2500\\ \Leftrightarrow y=100\)
\(\Leftrightarrow\dfrac{1}{3}\left(\dfrac{1}{5}-\dfrac{1}{y+3}\right)=\dfrac{98}{1545}\)
\(\Leftrightarrow\dfrac{1}{5}-\dfrac{1}{y+3}=\dfrac{98}{515}\)
\(\Leftrightarrow\dfrac{1}{y+3}=\dfrac{1}{103}\)
hay x=100
Ta có: \(\dfrac{k}{x.\left(x+k\right)}=\dfrac{x+k-x}{x.\left(x+k\right)}=\dfrac{1}{x}-\dfrac{1}{x+k}\)
nên áp dụng ta có:
\(\dfrac{3}{5.8}+\dfrac{3}{8.11}+\dfrac{3}{11.14}+...+\dfrac{3}{x.\left(x+3\right)}\)
\(=\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{14}+...+\dfrac{1}{x}-\dfrac{1}{x+3}\)
\(=\dfrac{1}{5}-\dfrac{1}{x+3}\)
Nên $\dfrac{1}{3}.\left(\dfrac{3}{5.8}+\dfrac{3}{8.11}+\dfrac{3}{11.14}+...+\dfrac{3}{x.\left(x+3\right)}\right)=\dfrac{1}{3}.(\dfrac{1}{5}-\dfrac{1}{x+3})$
Đến đây là làm được rồi nha
\(C=-\dfrac{3}{11.14}-\dfrac{3}{14.17}-\dfrac{3}{17.20}-...-\dfrac{3}{98.101}\)
\(\Rightarrow C=-\left(\dfrac{3}{11.14}+\dfrac{3}{14.17}+\dfrac{3}{17.20}+...+\dfrac{3}{98.101}\right)\)
\(\Rightarrow C=-\left(\dfrac{14-11}{11.14}+\dfrac{17-14}{14.17}+...+\dfrac{101-98}{98.101}\right)\)
\(\Rightarrow C=-\left(\dfrac{1}{11}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{17}+...+\dfrac{1}{98}-\dfrac{1}{101}\right)\)
\(\Rightarrow C=-\left(\dfrac{1}{11}-\dfrac{1}{101}\right)=\dfrac{-90}{1111}\)
Cảm ơn bạn! Đúng lúc bạn đang trả lời thì mình lại biết cách làm rồi. Cũng giống như cách làm của bạn.