K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2016

\(\Rightarrow\sqrt{x}-3\)phải ước của 5: 1;5;-1;-5

\(\Rightarrow\sqrt{x}-3\)=1\(\Rightarrow\)x=16

\(\Rightarrow\sqrt{x}-3\)=5\(\Rightarrow\)x=64

\(\Rightarrow\sqrt{x}-3\)=-1\(\Rightarrow\)x=4

\(\Rightarrow\sqrt{x}-3\)=-5\(\Rightarrow\sqrt{x}\)=-2 \(\Rightarrow\)x=-4

mà ta có căn của x là 1 số luôn luôn lớn hơn hoặc =0 nên cái này ta loại nghe bạn

vậy x=\(\hept{\begin{cases}4\\64\\16\end{cases}}\)

8 tháng 1 2017

Sự thật bài toán không đơn giản như vậy đâu? 

AH
Akai Haruma
Giáo viên
28 tháng 9

Lời giải:

$A=\frac{x-3}{1-x}=\frac{(x-1)-2}{1-x}=-1-\frac{2}{1-x}=-1+\frac{2}{x-1}$

Để $A$ nguyên thì $\frac{2}{x-1}$ nguyên. Với $x$ nguyên, điều này xảy ra khi $2\vdots x-1$

$\Rightarrow x-1\in\left\{1; -1; 2; -2\right\}$

$\Rightarrow x\in \left\{2; 0; 3; -1\right\}$

31 tháng 10 2016

\(M=\left|x-\frac{5}{4}\right|+\left|x+2\right|=\left|\frac{5}{4}-x\right|+\left|x+2\right|\)

Áp dụng bđt \(\left|x\right|+\left|y\right|\ge\left|x+y\right|\)với  \(xy\ge0\) ta có: 

\(M=\left|\frac{5}{4}-x\right|+\left|x+2\right|\ge\left|\frac{5}{4}-x+x+2\right|=\left|\frac{13}{4}\right|=\frac{13}{4}\)với \(\left(\frac{5}{4}-x\right)\left(x+2\right)\ge0\)

Lập bảng xét dấu:

x                           -2                                 5/4                    
5/4-x             +             |                  +               0                -
x+2             -              0                 +                |                +
(5/4-x)(x+2)             -              0                 +                0               -

Nhìn bảng xét dấu dễ thấy \(-2\le x\le\frac{5}{4}=1,25\) thỏa mãn\(\left(\frac{5}{4}-x\right)\left(x+2\right)\ge0\)

Vì x nguyên => \(x\in\left\{-1;0;1\right\}\)

Vậy Mmin=13/4 khi  \(x\in\left\{-1;0;1\right\}\)

23 tháng 5 2017

mình làm sai rồi nhé bạn

là dấu "=" xảy ra khi xy>=0

thật sự xin lỗi

2 tháng 3 2016

x lớn hơn hoặc bằng -2 và x nhỏ hơn hoặc bằng 5/4. 
x nguyên nên x thuộc {-2;-1;0;1}

7 tháng 1 2017

\(\frac{\sqrt{x}+1}{\sqrt{x}-1}=\frac{\sqrt{x}-1+2}{\sqrt{x}-1}=1+\frac{2}{\sqrt{x}-1}\)

Để biểu thức trên nguyên <=> \(\frac{2}{\sqrt{x}-1}\) nguyên 

                                     \(\Leftrightarrow\sqrt{x}-1\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\)

\(\Rightarrow\sqrt{x}-1=-2\Leftrightarrow\sqrt{x}=-1\Leftrightarrow x=1\)

\(\Rightarrow\sqrt{x}-1=-1\Leftrightarrow\sqrt{x}=0\Leftrightarrow x=0\)

\(\Rightarrow\sqrt{x}-1=1\Leftrightarrow\sqrt{x}=2\Leftrightarrow x=4\)

\(\Rightarrow\sqrt{x}-1=2\Leftrightarrow\sqrt{x}=3\Leftrightarrow x=9\)

Vậy để biểu thức đạt giá trị nguyên khi : x = { 0 ; 1 ; 4 ; 9 }

7 tháng 1 2017

Hứa hẹn nhiều chông gai lắm